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Abstract

It is shown that the field energy and momentum of a massless
quantized system confined to a cavity do not transform as a Lorentz
4-vector. This is a consequence of the fact that there is no Lorentz-
invariant way of separating the cavity-internal stress tensor from the
confining stress tensor. An analysis is done of blackbody radiation
and of the Casimir effect, both for a 1-D massless field and for 3-D
electromagnetism.

.

Introduction

In this note, we consider quantum fields confined to a cavity with perfectly
reflecting interior and exterior walls. The finite-temperature field energy
is easily computed, including zero-point effects leading to the Casimir ef-
fect. The internal energy and momentum are shown to be non-vectorial, by
which we mean that the four quantities do not transform as components
of a Lorentz 4-vector. A similar observation has previously been made by
McDonald [1] and Celmaster [2] for classical waves in a cavity. This non-
vectorial behavior of internal energy and momentum, is a general property
of classical confinement. It is easiest to visualize the origin of the non-vector
terms, by considering particles bouncing inside a box. If, in one reference
frame, two particles happen to simultaneously collide with opposite walls,
then in another reference frame those collisions won’t be simultaneous. In
fact, if we count the number of particles simultaneously traveling in oppo-
site directions, it turns out that this number is frame-dependent. Because of
that, there isn’t a Lorentz invariant way to separate the internal energy and
momentum of the particles from the energy and momentum of the walls. The
total energy and momentum (walls plus internal subsystem) form a Lorentz
4-vector, but not the internal components.

1



1 Review of classical confinement

The key results of McDonald [1] and Celmaster [2] pertain to classical elec-
tromagnetic standing waves in a right parallelepiped cavity with perfectly
reflecting walls. The cavity coordinates can be taken as (0 < x1 < L1, 0 <
x2 < L2, 0 < x3 < L3). Modes are indexed by n = (n1, n2, n3). Set the mode

vector1 components and frequencies to kni = niπ/Li and ωn =
√∑3

i=1(kni )2,

where the ni are non-negative integers (of which at least 2 must be nonzero).
Then the rest-frame standing waves (modes) for the ith component of the

electric and magnetic fields are

Ei(t,x) =
∑
n

[
1

tan(kni xi)

3∏
j=1

sin(knj xj)

]
[ani sin(ωnt) + bni cos(ωnt)], (1)

Bi(t,x) =
∑
n

[
tan(kni xi)

ωn

3∏
j=1

cos(knj xj)

]
[−(an×kn)i cos(ωnt)+(bn×kn)i sin(ωnt)],

(2)
where an and bn are coefficient vectors each perpendicular to n.2 The energy
is computed in the rest-frame as

U(t) =
1

2

∫ L1

0

∫ L2

0

∫ L3

0

(|E(t,x)|2 + |B(t,x)|2)d3x. (3)

Similarly, the momentum in the rest-frame can be obtained by computing
the Poynting vector which is seen to be 0 since it is a sum of equal but
opposite contributions from the left- and right-moving waves that make up
the standing wave.

Now go into a reference frame moving at velocity v to the right and
compute the energy of the field in this new reference frame, which we will call
the ′ frame.3 Let γ(v) = 1/

√
1− v2. The Lorentz transformations of these

electromagnetic fields to the ′-frame, with coordinates x′ = γ(v)(x− vt) and
t′ = γ(v)(t− vx), are

E ′1(t′, x′, y′, z′) = E1(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′),

B′1(t′, x′, y′, z′) = B1(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′),
(4)

1We use the term “mode vector” to denote the vector whose components are magnitudes
of the wave vectors for the oppositely moving waves that constitute the standing wave in
question.

2Notice that although the combination of trigonometric functions appears to sometimes
be ill-defined owing to either a 0 or infinite value of the tangent, it turns out that the
trigonometric ratios all have perfectly finite limits as the tangent approaches those values.

3Quantities in the ′ frame will be written with a ′, while quantities in the rest frame of
the box will be written without a ′.
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and for i = 2 or 3

E ′i(t
′, x′, y′, z′) = γ(v)[Ei(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′)

+εi1jvBj(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′)],

B′i(t
′, x′, y′, z′) = γ(v)[Bi(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′)

−εi1jvEj(γ(v)(t′ + vx′), γ(v)(x′ + vt′), y′, z′)],

(5)

where, in these equations, there is implied summation over j with the stan-
dard Levi-Civita epsilon symbol εi1j.

The energy in the ′-frame is4

U ′(t′) =
1

2

∫ L1
γ(v)
−vt′

−vt′

[∫ L2

0

∫ L3

0

(|E′(t′, x′, y′, z′)|2 + |B′(t′, x′, y′, z′)|2)dy′dz′
]
dx′.

(6)
After applying all the transformations, it can be shown that

〈U ′〉 = γ(v)
[
1 + u2

xv
2
]
〈U〉 , (7)

where ux = k1/ω is the x-component of the phase velocity of the right-moving
waves of eqs. (1) and (2), and 〈U〉 denotes the time average of U(t).

If it were possible to treat a standing wave as a standalone subsystem,
then, since its rest momentum is 0, we would have expected the boosted
energy to be γ(v) times the rest energy. However, we see from eq. (7), that
〈U〉 does not transform that way.

As mentioned in the Introduction, the non-vectorial nature of the internal
energy and momentum isn’t specific to electromagnetic waves. A similar
effect is found for particles in a box. Imagine a box of length L, in which there
are particles of mass m and velocities (±ux,±uy,±uz) bouncing elastically
off the walls. We will again consider both the box rest-frame, and the ′-frame
where the observer moves in the positive x direction with speed v. In the rest
frame, the left-moving particles are uniformly spaced in the x-direction with
separations 2L/N , and the right-moving particles have the same separations.
The interval in time between left-moving (or right-moving) particles passing
a given value of x is ∆ = 2L/(uxN) and at any instant (other than during

4There is an arbitrariness to the time-dependence of the x′ integral. The difference
between upper and lower bounds must be equal to the contracted length L1/γ but the
choice of time-displacement depends on precisely which value of t′ we choose to correspond
to t. In the moving frame, the positions (t′, x′) for a fixed value of t′ correspond in the rest
frame to different values of t. Our choice of bounds doesn’t have an intuitive interpretation,
but is as good as any other. All time-dependent results will be correct up to a constant
shift in time.
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the times when particles collide with the walls) there are N particles in
flight. Assume that m > 0. Each particle has a rest frame 4-momentum
mγ(u)(1,±ux,±uy,±uz) where u =

√
u2
x + u2

y + u2
z. In the rest frame, the

particle subsystem total energy is then

E = Nmγ(u) =
2Lmγ(u)

ux∆
. (8)

In the ′-frame the particle subsystem energy becomes

E ′ = Nγ(v)mγ(u)(1 + u2
xv

2) = γ(v)E(1 + u2
xv

2). (9)

The non-vectorial term in this equation (proportional to v2) is the same as
in eq. (7).

As mentioned earlier, the Lorentz 4-vector nature of energy and momen-
tum, is restored when considering the entire system consisting of the cavity
and radiation (or box and particles). If the walls were free to move, then
the radiation pressure (or collisions) would push them apart and give them
extra energy. That energy can be computed both in the rest frame and the
′-frame, and it can be shown (for the case of particles in a box) to have a
non-vectorial term which exactly cancels that of the subsystem. It could be
argued that this analysis strictly only applies to the situation where the walls
are free to move. So an alternate analysis can be given. Instead of moving
walls, let the walls be static and kept in place by external illumination. Then
the total energy of interest is the sum of the internal and the external energy
(the box energy remains constant). Again, it can be shown that the total
energy and momentum transform as a 4-vector.

2 Quantum treatment of a one-dimensional

massless scalar field theory

On general grounds, one might expect that the quantum field energy would
have the same kind of transformation properties as the classical field energy
and in particular, that confined fields in the quantum theory, would have a
non-vectorial energy term. Still, the calculations are different. In particular,
there is a Casimir effect that arises from field contributions that are both
interior and exterior to the cavity.

Let’s examine a one-dimensional free real scalar field theory in the region
0 ≤ x ≤ L with Dirichlet boundary conditions at x = 0 and x = L. We will
refer to such Dirichlet boundaries as perfect mirrors. The field operator is
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ΦL(t, x) with ΦL(t, 0) = 0 and ΦL(t, L) = 0. Field values are set to 0 outside
this region. Equations of motion within the region are satisfied by

ΦL(t, x) =
∑
n

i

√
1

nπ
sin(

nπx

L
)(ane

−inπt/L − a†neinπt/L), (10)

where the index n ranges over positive integers. As usual, the raising and
lowering operators in this equation obey commutation relations

[an, a
†
n′ ] = δn,n′ , (11)

and the theory is instantiated on a Fock space generated from the vacuum
state and from one-particle states of the form

|n〉 = a†n|0〉. (12)

In this scalar theory, the Hamiltonian density5 is

H̃S(x, t) =
1

2

(
(∂tΦL(t, x))2 + (∂xΦL(t, x))2

)
. (13)

Since the terms on the right are products of operators, the expression is
understood to be regularized. There are of course many methods that can
be used for regularization. We’ll adopt the point-splitting method (see, for
example, Birrell and Davies [3] or Polchinski [4] (the operator product ex-
pansion)). When applied to eq. (13), the expression for the Hamiltonian
density becomes6

H̃S(t, x) = lim
ε→0

1

2
[{∂tΦL(t, x+ ε)∂tΦL(x)}S + {∂xΦL(t, x+ ε)∂xΦL(t, x)}S] ,

(14)
where we use the notation {AB}S to denote the symmetrized product 1

2
(AB+

BA). The total Hamiltonian, is

HS =

∫ L

0

dxH̃S(t, x). (15)

5Herein, the term Hamiltonian refers to the operator for the time-translation generator,
and the term Energy refers to a context-dependent average value with respect to states.

6The point-splitting method as applied here, is to be interpreted so that the operators
whose arguments involve ε are to be formally treated as though the cavity is displaced
by a value of ε. This interpretation is at best vague, since we want all terms in an
operator-product to act on the same Hilbert Space. More accurately, we simply consider
a prescription where certain terms that would have involved the parameter x in expecta-
tion values of the Hamiltonian density, are modified to x + ε. Were we to integrate the
Hamiltonian density over the range 0 < x < X − ε, we would end up with a change to
the finite Casimir energy term. Some other regularization methods appear to have better
physical motivations.
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Energy is computed by taking expectation values of the operator HS in
various states of interest. Because of this, and also because of the necessity
for renormalization, the cavity analysis should be slightly modified from what
was done in the classical case. Following the usual approach when calculating
the Casimir effect, we will consider a system of length L as above, but within
which is a pair of perfect mirrors separated by distance X in the rest frame.
Those mirrors are free to move7 and therefore X may change with time. The
position of the left mirror will be given as x = x0 and the position of the
right mirror as x = x0 + X. For convenience, take x0 = 0. The Dirichlet
boundary conditions are now ΦX

L (t, 0) = 0, ΦX
L (t,X) = 0 and ΦX

L (t, L) = 0.
The field operator ΦX

L (t, x) satisfying appropriate commutation relations,
equations of motion and boundary conditions can be written as a tensor
product of operators on the Hilbert Space H defined as

H = HX ⊗HL−X . (16)

whereHZ denotes the Fock space generated by one-particle states of the form
given in equation (12). Then

ΦX
L (t, x) = ΦX(t, x)⊗ ΦL−X(t, x), (17)

where ΦZ(t, x) operates on the Hilbert space HZ
8 ,

ΦX(t, x) =
∑
n

i

√
1

nπ
sin(

nπx

X
)(ane

−inπt/X − a†neinπt/X), (18)

for 0 ≤ x ≤ X, and

ΦL−X(t, x) =
∑
n

i

√
1

nπ
sin(

nπx

L−X
)(ane

−inπt/(L−X) − a†neinπt/(L−X)), (19)

for X ≤ x ≤ L. Outside of the specified ranges, the fields are 0. The
Hamiltonian for this system is HX ⊗HL−X .

7We will take the mirrors to be very massive relative to the total field energy so that
their motions induce only higher-order effects in the calculations which follow.

8In what follows, we have slightly abused notation by using the same symbol an for the
annihilation operator acting on HX and the annihilation operator acting on HL−X . Sim-
ilarly with the creation operators. Although symbols should technically be distinguished
when acting on different Hilbert spaces, the ambiguity can be entirely resolved by context.
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2.1 Vacuum expectation value

The vacuum state of HZ is |0〉Z and we write the vacuum state of the tensor
product space H as |0〉X |0〉L−X . Then the rest-frame vacuum energy den-
sity ES(t, x) is the vacuum expectation value of the rest-frame Hamiltonian
density.

ES(t, x) = lim
ε→0

[(L−X〈0|)(X〈0|)
1

2
{∂tΦX

L (t, x+ ε)∂tΦ
X
L (t, x)}S+

{∂xΦX
L (t, x+ ε)∂xΦ

X
L (t, x)}S |0〉X |0〉L−X ].

(20)

It is straightforward to evaluate this expression using 〈0|ana†n|0〉 = 1. We get

ES(t, x) = lim
ε→0

{∑
n

πn
2X2 cos(πnε

X
) if 0 ≤ x ≤ X∑

n
πn

2(L−X)2 cos( πnε
(L−X)

) if X < x ≤ L.
(21)

The total energy is obtained by integrating over the entire region 0 ≤ x ≤ L,
and taking the ε→ 0 limit,9

EX
L (ε) =

∑
n

πn

2X
cos
(πnε
X

)
+
∑
n

πn

2(L−X)
cos

(
πnε

L−X

)

=
d

dε

{
1

2

∑
n

sin(πnε/X) + sin(πnε/(L−X))

}

=
d

dε

{
1

4i

∑
n

eiπnε/X − e−iπnε/X + eiπnε/(L−X) − e−iπnε/(L−X)

}

=
d

dε

{
1

4i

[
1

1− eiπε/X
− 1

1− e−iπε/X
+

1

1− eiπε/(L−X)
− 1

1− e−iπε/(L−X)

]}
=

d

dε

{
1

4
[cot(πε/(2X) + cot(πε/(2(L−X))]

}
=
−π
8

[
csc2(πε/(2X)

X
+

csc2(πε/(2(L−X)))

L−X

]
=
−L
2πε2

− π

24X
− π

24(L−X)
+O(ε).

(22)

9In the equation which follows, one of the intermediate steps requires the infinite sum
of a series like eiπnε/X of terms, each of magnitude 1. Strictly speaking, this series only
converges for values of ε with a non-zero imaginary part (positive or negative depending
on the particular series). However, after taking the sum, the imaginary part can be taken
to 0.
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This is the familiar 1-D Casimir energy. When L is taken to be very large
relative to X, the 3rd term drops out. The first term, which diverges with ε,
doesn’t depend on X and thus doesn’t contribute to the force on the inner
wall. A more familiar derivation of the Casimir energy can be obtained by
observing that the first term above starts with∑ πn

2X
cos(

πnε

X
) =

1

2

[∑ πn

2X
ei
πnε
X +

∑ πn

2X
e−i

πnε
X

]
. (23)

Each of the sums on the right-hand side are functions of ε which can be
obtained by analytic continuation10 to +iε for the first sum and −iε for the
second sum. In each case, the resulting sum is a heat-kernel regularized sum
of mode energies as shown, for example, in Schwartz [5].

Turn now to the ′-frame, the reference frame moving to the right relative
to the rest-frame with speed v. The ′-frame coordinates x′ and t′ are related
to x and t as in the previous section and the boundaries are at x′ = γ(v)(−vt),
x′ = γ(v)(X − vt) and x′ = γ(v)(L− vt). The scalar fields transform as11

Φ′Z(t′, x′) = ΦZ(t, x). (24)

So, following eq. (18),

∂t′φX(t′, x′) =

(
∂t

∂t′
∂t +

∂x

∂t′
∂x

)
φX(t, x)

=
∑
n

i

√
nπ

X
γ(v)[−i sin(

nπx

X
)(ane

−inπt/X + a†ne
inπt/X)

+ v cos(
nπx

X
)(ane

−inπt/X − a†neinπt/X)],

(25)

∂x′φX(t′, x′) =

(
∂t

∂x′
∂t +

∂x

∂x′
∂x

)
φX(t, x)

=
∑
n

i

√
nπ

X
γ(v)[−iv sin(

nπx

X
)(ane

−inπt/X + a†ne
inπt/X)

+ cos(
nπx

X
)(ane

−inπt/X − a†neinπt/X)],

(26)

and similarly for φL−X(t′, x′).
The vacuum energy density in the ′-frame is, analogously to eq. (20)

E ′S(t′, x′) = lim
ε→0

[(L−X〈0|)(X〈0|)
1

2
({(∂t′Φ

′X
L (t′ − vγ(v)ε, x′ + γ(v)ε)∂t′Φ

′X
L (t′, x′))}S+

{(∂x′Φ
′X
L (t′ − vγ(v)ε, x′ + γ(v)ε)∂x′Φ

′X
L (t′, x′))}S) |0〉X |0〉L−X ].

(27)

10Perhaps more rigor would be warranted here to establish analyticity and convergence.
11Notice that the subscript Z in this equation is just a label for the fields.
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Note that the point-splitting regularization has been obtained by transform-
ing the field arguments from the regularized rest-frame arguments. We will
refer to this as “rest-frame regularization”. Alternatively, we could have reg-
ularized the expression by changing products of the form Θ(t′, x′)Θ(t′, x′)
to the regularized form limε′→0 Θ(t′, x′ + ε′)Θ(t′, x′), where Θ represents an
arbitrary field. We would refer to this as “ ′-frame regularization”. Neither
procedure is Lorentz covariant and the limits turn out to differ as shall be
described shortly. Using the rest-frame regularization as given in eq. (27),
integrating the energy density over the contracted regions, and following the
same approach as in eqs.(22), we end up with the total energy in the ′-frame

E
′X
L (ε) =

[
−L
2πε2

− π

24X
+

π

24(L−X)

]
γ(v)(1 + v2) +O(ε). (28)

The expression transforms in just the same (non-vectorial) way that we found
in the classical theory. However, had we used ′-frame regularization, we would
have found that the divergent term in the ′-frame is − L

γ(v)2πε′2
. The finite part

would have been the same as in eq. (28).

2.2 Blackbody radiation

The vacuum expectation value computed in the previous section, corresponds
to field theory at 0 temperature. When we examine field theory at finite
temperature, we end up computing expectation values of multiparticle states
whose single-particle momenta correspond to the modes of the classical the-
ory summarized in the Introduction. It should be mentioned here, that our
setup isn’t typical of most blackbody analyses. In particular, we have been
examining a system which can be regarded as one cavity adjacent to another.
The common mirror is reflective on both sides. We arrange that both cav-
ities have the same temperature, and we will analyze the 0-point energy as
was done in the previous section. There may be no virtue in analyzing this
two-cavity system rather than a single-cavity system, other than for the sake
of possible clarity in isolating the 0-point contribution.

Recall that the Hilbert space H for the theory under consideration, is a
tensor product of two Hilbert spaces defined respectively by states localized
between the rest positions 0 ≤ x ≤ X, andX < x ≤ L. In each Hilbert space,
single-particle states are given by |n〉 defined in eq. (12). Now generalize the
notation to accommodate multi-particle states, defined by

|m〉 ≡ |m1,m2,m3...〉

=
a†m1

1√
m1!

a†m2

2√
m2!

a†m3

3√
m3!

...|0〉,
(29)
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where the value mi is the particle occupation number for the ith mode. The
full Hilbert space is generated by the tensor products |m,m′〉 ≡ |m〉X |m′〉L−X
where the subscripts are used to distinguish the two Hilbert spaces.

The finite-temperature theory can be described by a canonical ensemble,
implemented with the canonical density matrix

ρS(T ) =
e
− HS
kBT

ZS

=
∑
m,m′

P (m,m′, T )|m,m′〉〈m,m′|,
(30)

where the partition function is ZS = Tr

(
e
− HS
kBT

)
and the probability P is

derived as follows. From eq. (14) which specifies the Hamiltonian density,
and from eqs. (18) and (19) for the fields, we obtain the rest Hamiltonian
density

H̃S(t, x) = lim
ε→0



∑
n,m

π
√
nm

2X2 {[sin(πn(x+ε)
X

) sin(πmx
X

) + cos(πn(x+ε)
X

) cos(πmx
X

)]

(a†name
i(n−m)πt

X + ana
†
me
− i(n−m)πt

X )+

[sin(πn(x+ε)
X

) sin(πmx
X

)− cos(πn(x+ε)
X

) cos(πmx
X

)](a†na
†
me

i(n+m)πt
X + aname

− i(n+m)πt
X )}

if 0 ≤ x ≤ X∑
n,m

π
√
nm

2(L−X)2{[sin(πn(x+ε)
L−X ) sin( πmx

L−X ) + cos(πn(x+ε)
L−X ) cos( πmx

L−X )]

(a†name
i(n−m)πt
L−X + ana

†
me
− i(n−m)πt

L−X )+

[sin(πn(x+ε)
L−X ) sin( πmx

L−X )− cos(πn(x+ε)
L−X ) cos( πmx

L−X )](a†na
†
me

i(n+m)πt
L−X + aname

− i(n+m)πt
L−X )}

if 0 ≤ x ≤ (L−X).

(31)
When this expression is integrated to obtain the rest-frame Hamiltonian, the
terms with a†na

†
m and anam for all m and n, as well as terms a†nam and ana

†
m

for n 6= m, all integrate to 0. The remaining term simplifies by invoking a
simple trigonometric identity and rewriting aNa

†
N as a†NaN + 1. The result is

HS = lim
ε→0

∑
n

{
πn

2X
cos(

πnε

X
)(2a†NaN + 1) +

πn

2(L−X)
cos(

πnε

L−X
)(2a†NaN + 1)

}
.

(32)
Recalling that a†nan|m〉X = mn|m〉X (and similarly for |m〉L−X) we see that
the eigenvectors and eigenvalues of HS are given by

HS|m,m′〉 = Em,m′ |m,m′〉, (33)
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where

Em,m′ = [lim
ε→0

∑
n

πnmn

X
cos(

πnε

X
) +

πnm′n
L−X

cos(
πnε

L−X
)+∑

n

πn

2X
cos(

πnε

X
) +

∑
n

πn

2(L−X)
cos(

πnε

(L−X)
)].

(34)

The second sum is familiar from the first line of eq. (22) as the Casimir
contribution. The term P (m,m′, T ) which appears in eq. (30) is seen to be

P (m,m′, T ) =
e−βEm,m′

ZS
, (35)

where β = 1
kBT

, kB is Boltzmann’s constant and the partition function is

ZS =
∑
m,m′

e−βEm,m′

=
∑
m,m′

∏
n

e−β cos(πnε
X

)
πn(mn+ 1

2 )

X

∏
n′

e−β cos( πn
′ε

L−X )
πn′(mn′+

1
2 )

X

=
∏
n

∑
m

e−β cos(πnε
X

)
πn(mn+ 1

2 )

X

∏
n′

∑
m′

e−β cos( πn
′ε

L−X )
πn′(mn′+

1
2 )

L−X

=

∞,∞∏
j=1,j′=1

e−β
jπ cos(

jπε
X

)

2X

(1− e−β jπX cos( jπε
X

))

e−β
j′π cos(

j′πε
L−X )

2(L−X)

(1− e−β
j′π
L−X cos( j

′πε
L−X ))

.

(36)

We can now compute the ensemble average of the energy. This is given
by Tr(ρ(T )HS) and follows the same approach as the derivation of ZS.

Tr[ρ(T )HS] =
1

ZS

∑
m,m′

Em,m′e
−βEm,m′

= −∂ log(ZS)

∂β

= lim
ε→0

EL,T (ε),

(37)
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where

EL,T (ε) =
∑
j

[
jπ cos( jπε

X
)

2X

(
1 +

2e−β
jπ
X
cos( jπε

X
)

1− e−β jπX cos( jπε
X

)

)
+
jπ cos( jπε

L−X )

2(L−X)

(
1 +

2e−β
jπ
L−X cos(

jπε
L−X )

1− e−β
jπ
L−X cos(

jπε
L−X )

)]

=

[∑
j

(
jπ

X

)
e−β

jπ
X

1− e−β jπX
+

(
jπ

L−X

)
e−β

jπ
L−X

1− e−β
jπ
L−X

]

+
−L
2πε2

− π

24X
− π

24(L−X)
+O(ε),

(38)
where the last line of this equation was previously derived in eq. (22). The
first line and part of the second can be expressed in terms of the Dedekind
eta function η(τ) so altogether

EL,T (ε) =
d

dβ
ln

[
η(
iβ

2X
)η(

iβ

2(L−X)
)

]
− L

2πε2
+O(ε). (39)

Now let us derive the energy in the ′-frame. The density-matrix basis will
be taken to be the same in the ′-frame as in the rest frame. One important
difference in the ′-frame, is that the Hamiltonian contains non-zero terms of
the form a†nam where n 6= m as well as non-zero terms of the form anam and
a†na

†
m for all n,m. In the rest frame, those terms are absent because in the

scalar field operator, such terms are multiplied by trigonometric products
of the form sin(nπx

L
) sin(mπx

L
). Since m 6= n, those trigonometric products

integrate to 0. However, in the ′-frame, the change of coordinates results in
an integral which looks like, for example,

F (n,m) =∫ L
γ(v)

+k

k

dx sin(
nπγ(v)(x+ vt)

L
) sin(

mπγ(v)(x+ vt)

L
)cos

(n−m)πγ(v)(t+ vx)

L
.

(40)
This integral is generally neither 0 nor time-independent. A similar phe-
nomenon is derived in Celmaster [2] for the classical electromagnetic field
where the ′-frame Hamiltonian oscillates in time12.

In order to proceed with the computation of the ′-frame finite temperature
energy, we note that the quantity of interest to us will be

Tr[H ′Sρ(T )] = Tr[H ′Se
−βHS ]/ZS

=
∑
m,m′

〈m,m′|H ′Se−βHS |m,m′〉/ZS. (41)

12This fact already illustrates that the energy and momentum don’t transform as a
Lorentz 4-vector
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The reason that we employ the same density matrix in the ′-frame as in
the rest frame, is that the ensemble probabilities of basis states are assumed
to be frame-independent13. Consider those terms in the Hamiltonian of the
type above with a†nam (n 6= m). We see that for those terms and products
of those terms with those of HS, we get 〈m,m′|a†nam...|m,m′〉 = 0. Similarly
with all terms of the form anam and a†na

†
m.

If we define Ĥ ′S as H ′S minus all terms of the form a†nam (n 6= m) and all
terms of the form anam and a†na

†
m, then |m,m′〉 are eigenvalues of Ĥ ′S and by

above, we see that
Tr[H ′Sρ(T )] = Tr[Ĥ ′Sρ(T )]. (42)

We obtain Ĥ ′S by first Lorentz-transforming, as shown in eqs. (25) and
(26), φX(t, x) and φL−X(t, x). Following the same approach used to obtain
equation (28) for the ′-frame vacuum energy we find that that the ′-frame
ĤS eigenvalues corresponding to the rest-frame values given in equation (34)
are

E ′m,m′ = γ(v)(1 + v2)Em,m′ . (43)

Then the ′-frame ensemble average of the energy is

Tr(ρ(T )H ′S) =
1

ZS

∑
m,m′

E ′m,m′e
−βEm,m′

= γ(v)(1 + v2)
1

ZS

∑
m,m′

Em,m′e
−βEm,m′

= lim
ε→0

γ(v)(1 + v2)EL,T (ε),

(44)

where the rest-frame average energy EL,T (ε) is given by equation (39). Once
again, the energy transforms non-vectorially just as in the classical theory.

3 Quantum Electrodynamics

The 3-D treatment of radiation in a cavity, closely follows what was done in
the previous section for a 1-D scalar field. The enclosure to be considered is
a perfectly reflective right parallelepiped cavity with coordinates (0 < x1 <
L1, 0 < x2 < L2, 0 < x3 < X) contiguous to a perfectly reflective right

13It would be difficult to imagine a notion of probability which is frame-dependent.
Nevertheless some frame must be chosen in which we comfortably can invoke the principle
of equal a priori probabilities. The rest frame seems the natural choice hence the one we
use here for the density matrix.
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parallelepiped cavity with coordinates (0 < x1 < L1, 0 < x2 < L2, X < x3 <
L). (Alternatively, think of this as a single cavity whose third dimension is of
length L but which has a partition located at x3 = X and which is reflective
on both of its sides.)

The electric and magnetic field operators within each cavity are

Ej
L3

(t,x) =
′′∑

n≡(n1,n2,n3),α

2

√
ω(n, L3)

L1L2L3

1

tan(
πnjxj
Lj

)

3∏
k=1

sin(
πnkxk
Lk

)

[ian,αe
j
α(n, L3)e−iω(n,L3)t − ia†n,αejα(n, L3)eiω(n,L3)t],

Bj
L3

(t,x) =
′′∑

n≡(n1,n2,n3),α

2

√
1

ω(n, L3)L1L2L3

tan(
πnjxj
Lj

)(
3∏

k=1

cos(
πnkxk
Lk

))

εjkl
πnk
Lk

el,α(n, L3)[an,αe
−iω(n,L3)t + a†n,αe

iω(n,L3)t].

(45)

The double prime on the summation symbol denotes that in the sum, ni ≥ 0,
at most one of the ni equals 0 and in that case, there is only one polariza-
tion instead of 2.14 In these expressions, the parameter L3 denotes the x3

dimension of the cavity, so has the value X or L−X. Also,

ω(n, L3) ≡

√
π2n2

1

L2
1

+
π2n2

2

L2
2

+
π2n2

3

L2
3

. (46)

As usual, h̄ is set to 1, the an,α and a†n,α are lowering and raising operators on

the Hilbert Space HC with commutation relations [an,α, a
†
n′,α′ ] = δn,n′δα,α′ ,

and the eα(n, L3) are Coulomb gauge polarization vectors with

eα(n, L3) · n = 0,
2∑

α=1

ei,α(n, L3)ej,α(n, L3) = δij −
π2ninj

LiLjω2(n, L3)
.

(47)

The Hilbert Space HC denotes the Fock space generated by one-particle
states of the form

|n, α〉 = a†n,α|0〉. (48)

In a way similar to what was done with the 1-D scalar field, we can write

EX
L (t,x) = EX(t,x)⊗ EL−X(t,x),

BX
L (t,x) = BX(t,x)⊗BL−X(t,x).

(49)

14The single polarization also leads to the correctly normalized commutation relations
between the vector potential and the electric field.
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where EX
L (t,x) and BX

L (t,x) operate on the Hilbert space

H = HX ⊗HL−X . (50)

It would seem natural, in analogy to the 1-D theory, to write a regulated
version of the rest-frame Hamiltonian density as

H̄ε
EM(t,x) = lim

ε→0

1

2
[{EX

L (t,x + ε) · EX
L (t,x)}S + {BX

L (t,x + ε) ·BX
L (t,x)}S],

(51)
where as before, the notation {AB}S denotes the symmetrized product 1

2
(AB+

BA). Unfortunately, the vector ε breaks rotational invariance and the ε→ 0
limit could lead to a wrong Casimir force. Further discussion about frame-
dependent regularization can be found, for example, in DeWitt [6] and Hagen
[7]. In lieu of equation (51) we will therefore write

H̃EM(t,x) = lim
Λ→∞

1

2
RΛ[EX

L (t,x) · EX
L (t,x) + BX

L (t,x) ·BX
L (t,x)]. (52)

where RΛ denotes a Gaussian regulator such as that described in Schwartz
[5]. The total rest-frame Hamiltonian is

HEM =

∫ L1

0

dx1

∫ L2

0

dx2

∫ L

0

dx3H̃EM(t,x). (53)

Expanding the integrand, inserting the regulator and then integrating, we
obtain

HEM = lim
Λ→∞

HΛ
EM , (54)

where

HΛ
EM =

1

2

′∑
n,α

ω(n, X)e−(
ω(n,X)
πΛ

)2

[an,αa
†
n,α + a†n,αan,α]X

+
1

2

′∑
n,α

ω(n, L−X)e−(
ω(n,L−X)

πΛ
)2

[an,αa
†
n,α + a†n,αan,α]L−X .

(55)

The prime on the summation symbol denotes that in the sum, ni ≥ 0, at
most one of the ni equals 0 and in that case, the term should be multiplied
by 1

2
.15 The notation [...]C surrounding annihilation and creation operators,

indicates that those operators are acting on the Hilbert space HC . There are

15The prime is used in treatments such as Milloni [8] and Casimir [9]. Those authors
observe that when one of the ni is 0, photons have only one, rather than two polarizations,
thus an energy contribution half as large as for other modes. This was accounted for in eq.
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no terms proportional to an,αan,α or a†n,αa
†
n,α because their coefficients (when

adding the electric and magnetic contributions) are each zero. HΛ
EM can be

simplified somewhat by invoking the commutation relations. This leads to
an expression somewhat similar to H in eq. (32).

HΛ
EM =

′∑
n,α

ω(n, X)e−(
ω(n,X)
πΛ

)2

(
[a†n,αan,α]X +

1

2

)

+
′∑

n,α

ω(n, L−X)e−(
ω(n,L−X)

πΛ
)2

(
[a†n,αan,α]L−X +

1

2

)
.

(56)

From this, we can compute the energy vacuum expectation value as

E0,EM = (L−X〈0|) (X〈0|) HEM |0〉X |0〉L−X
= lim

Λ→∞
EΛ

0,EM ,
(57)

where

EΛ
0,EM =

{
′∑
n

[
ω(n, X)e−(

ω(n,X)
πΛ

)2
]

+
′∑
n

[
ω(n, L−X)e−(

ω(n,L−X)
πΛ

)2
]}

.

(58)
For simplicity, take L1 = L2 = L. Employing a Euler-MacLaurin formula

(see, for example, Abramowitz and Stegun [[10]]) and following the derivation
of Casimir [9] (and also derived later in this paper) we obtain

EΛ
0,EM =

π2
√
π

8
L3Λ4 − L2π2

720X3

[
1 +O(

X

L
,

1

XΛ
)

]
. (59)

Only the X-dependent term is of physical significance.

(45) via the double-prime notation. This, however, would appear to be cancelled by the
energy contribution required for the integrals in 3-space, as shown in eq. (53). Specifically,
for modes where all ni 6= 0, the integrands are of the form tr21(n1πx1

L1
)tr22(n2πx2

L2
)tr23(n3πx3

L3
)

where the tri() are either cos() or sin() and each term with tr2i () integrates to a value of
Li

2 . The 3-D integral is therefore equal L1L2L3

8 . However, when ni = 0 for some value
of i, the integral is 0 unless tri() is cos() in which case that factor is 1, and the integral
over that dimension is Li. The 3-D integral is then L1L2L3

4 which is twice the value for
modes where all ni 6= 0. In particular, for modes where one of the ni = 0, that factor of
two exactly cancels the factor of two coming from the fact that those modes have only a
single polarization. Nevertheless, there is a remaining factor of 2 which arises from the
fact that when one of the ni = 0, then only one component of the electric mode and two
components of the magnetic mode are non-zero. When performing the appropriate sums
of products of polarization vectors, it turns out that these add up to a half of what they
would if all electromagnetic mode components were non-zero. That factor of 1

2 then leads
to our definition of the primed sum.
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We turn now to blackbody radiation for electromagnetism. This analysis
closely follows what was done in the previous section, for the 1-D scalar the-
ory. Begin by defining multi-particle states analogously to the 1-D definition
of equation (29)

|{m,α} > ≡ |m(1,1),m(1,2),m(2,1),m(2,2)... >

=
(â†kn1 ,1)m1,1√

m1,1!

(â†kn1 ,2)m1,2√
m1,2!

(â†kn2 ,1)m2,1√
m2,1!

(â†kn2 ,2)m2,2√
m2,2!

...|0 >,
(60)

where mi,j is the occupancy number for mode i with polarization j. The
full Hilbert space is generated by the tensor products |{m,α}, {m′, α′}〉 ≡
|{m,α}〉X |{m′, α′}〉L−X where the subscripts are used to distinguish the two
Hilbert spaces.

The canonical density matrix, similar to that in equation (30) is

ρEM(T ) =
e
−HEM

kBT

ZEM

=
∑

{m,α},{m′,α′}

PEM({m,α}, {m′, α′}, T )|{m,α}, {m,α′}〉〈{m,α}, {m′, α′}|,

(61)

with the partition function ZEM = Tr(e
−HEM

kBT ) and PEM({m,α}, {m′, α′}, T )
to be derived similarly to the derivation of P (m,m′, T ) in equation (35)).
We begin the derivation of PEM by noting from equation (56), that the
eigenvalues of HEM are

E{m,α},{m′,α′} = lim
Λ→∞

[
′∑

n,α

mn,αω(n, X)e−(
ω(n,X)
πΛ

)2

+
′∑

n,α

m′n,αω(n, L−X)e−(
ω(n,L−X)

πΛ
)2

+
′∑

n,α

1

2
ω(n, X)e−(

ω(n,X)
πΛ

)2

+
′∑

n,α

1

2
ω(n, L−X)e−(

ω(n,L−X)
πΛ

)2

].

(62)

Therefore

PEM({m,α}, {m′, α′}, T ) =
e−βE{m,α},{m′,α′}

ZEM
, (63)

with
ZEM = lim

Λ→∞
ZΛ
EM , (64)
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where

ZΛ
EM =

∑
{m,α},{m′,α′}

[
′∏

n,α

e−βmn,αω(n,X)

′∏
n,α

e−βm
′
n,αω(n,L−X)

′∏
n,α

e
−β
2
ω(n,X)e−(

ω(n,X)
πΛ

)2
′∏

n,α

e−
β
2
ω(n,L−X)e−(

ω(n,L−X)
πΛ

)2

] +O(
1

Λ
)

=
′∏
n

(1− e−βω(n,X))−2

′∏
n

(1− e−βω(n,L−X))−2

′∏
n

e−βω(n,X)e−(
ω(n,X)
πΛ

)2
′∏
n

e−βω(n,L−X)e−(
ω(n,L−X)

πΛ
)2

] +O(
1

Λ
).

(65)
The prime on the product symbol denotes that in the product, ni ≥ 0, at
most one of the ni equals 0 and in that case, the square-root should be taken
for that term. Notice that the first two products don’t involve the Gaussian
regularization term. This is because its effect on those terms (which turn out
to converge for finite Λ) is O( 1

Λ
).

The thermal average energy is

〈HEM〉 = −∂ log(ZEM)

∂β

=
′∑
n

(
2ω(n, X)e−βω(n,X)

1− e−βω(n,X)
+

2ω(n, L−X)e−βω(n,L−X)

1− e−βω(n,L−X)
)+

lim
Λ→∞

[
′∑
n

ω(n, X)e−(
ω(n,X)
πΛ

)2

+
′∑
n

ω(n, L−X)e−(
ω(n,L−X)

πΛ
)2

].

(66)

We recognize the last line as the large-Λ limit of eq. (58). Taking L1 =
L2 = L and the large L and large Λ limits, we obtain (some details of
this calculation are provided later, when we examine the ′-frame) the usual
Stefan-Boltzmann law plus Casimir contribution.

〈HEM〉 = lim
Λ→∞

〈
HΛ
EM

〉
, (67)

where〈
HΛ
EM

〉
=
L3π2

15β4 (1 +O(
1

L
, e−β/X)) +

π2
√
π

8
L3Λ4 − L2π2

720X3
[1 +O(

X

L
,

1

XΛ
)].

(68)
The limits considered in this expression are L → ∞ and β → ∞. The
asymptotic behavior O(e−β/X) denotes that the term is exponentially small
as β/X →∞. For comparison, see Schwinger et al.[11].
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The ′-frame field energy can also be computed and the steps are similar
to those described for the 1-D scalar field theory. The electric and magnetic
field components of eq. (45) transform in the ′-frame according to eqs. (4)
and (5). Contributions to the thermal average of the ′-frame Hamiltonian,
come from terms proportional to either the identity or the number operators
a†nan. Terms proportional to v integrate to zero. The remaining parts of the
Hamiltonian can then be assembled either by direct calculations with the
polarization vectors, or with identities of the kind employed for the analogous
classical calculation in McDonald [1] and Celmaster [2]. The result is that

each mode is multiplied by γ(v)
(

1 +
n2

3v
2π2

ω2(n,L3)L2
3

)
where L3 is either X or

L−X depending on context. The thermal average of the ′-frame Hamiltonian
becomes16

〈H ′EM〉T =
′∑
n

γ(v)

(
1 +

n2
3v

2π2

ω2(n, X)X2

)
2ω(n, X)e−βω(n,X)

1− e−βω(n,X)
+

′∑
n

γ(v)

(
1 +

n2
3v

2π2

ω2(n, L−X)(L−X)2

)
2ω(n, L−X)e−βω(n,L−X)

1− e−βω(n,L−X)
+

lim
Λ→∞

[
′∑
n

γ(v)

(
1 +

n2
3v

2π2

ω2(n, X)X2

)
ω(n, X)e−(

ω(n,X)
πΛ

)2

+

′∑
n

γ(v)

(
1 +

n2
3v

2π2

ω2(n, L−X)(L−X)2

)
ω(n, L−X)e−(

ω(n,L−X)
πΛ

)2

].

(69)
The summation of terms appears to have somewhat different consequences

for the ′-frame Stefan-Boltzmann energy E ′SB, and the ′-frame Casimir en-
ergy E ′C . Both summations will be done with a Euler-MacLaurin (E-M)
expansion [10]. First we consider the Stefan-Boltzmann contribution. The
n1 and n2 summations are done first. Then the second line of eq. (69) is, for
L1 = L2 = L, and to leading order in L,

E
′(L−X)
SB =

L2

π2

′∑
n3

∫
dxdyγ(v)

√
x2 + y2 + h2n2

3(1+
v2h2n2

3

x2 + y2 + h2n2
3

)
e−β
√
x2+y2+h2n2

3

1− e−β
√
x2+y2+h2n2

3

,

(70)
where h = π

L−X and the superscript L−X refers to the second line of equation
(69). Now invoking the E-M expansion for the n3 sum, this becomes to

16Note that we don’t choose to change the regularization despite the fact that coordi-
nates have been Lorentz-transformed.
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leading order in h,

E
′(L−X)
SB ≈

(
L(L−X)

π3

)∫ π
2

0

dφ

∫ π
2

0

dθ sin(θ)

∫ ∞
0

drr2

[
r(1 + v2 cos(θ))

e−r

1− e−r

]
= γ(v)

(
1 +

v2

3

)
EL−X
SB .

(71)
As usual, unprimed quantities refer to the rest frame. A similar result holds
for the first line of eq. (69) , and this is therefore suppressed by O( 1

L
) so that

altogether

E ′SB = γ(v)

(
1 +

v2

3

)
ESB

[
1 +O(

1

L
)

]
. (72)

For the ′-frame Casimir energy, start with the third line of eq. (69).
Define h̃ = 1

XΛ
. As above, the sums over n1 and n2 become integrals over x1

and x2, and to leading order in L we obtain,

E
′X
C = πL2Λ3

′∑
n3

∫
dxdyγ(v)

√
x2 + y2 + h̃2n2

3

(
1 +

v2h̃2n2
3

x2 + y2 + h̃2n2
3

)
e−(x2+y2+h̃2n2

3).

(73)
Following Casimir [9], change the x, y integral to an integral over polar co-
ordinates r and φ, then define

F (z) = πL2Λ3γ(v)

∫ π
2

0

dφ

∫ ∞
0

drr
√
r2 + z2(1 +

v2z2

r2 + z2
)e−(r2+z2), (74)

and change coordinates so that u = r2 + z2. Then,

F (z) =
π2L2Λ3

4
γ(v)

∫ ∞
z2

du
√
u(1 +

v2z2

u
)e−u. (75)

The E-M expansion requires the following derivatives of F , evaluated at

z = 0 and z =∞. Set K̃ = π2L2Λ3γ(v)
4

.

F
′
(z) = K̃

{
v2
√
π

[
−2zerf(z)− 2z2e−z

2

√
π

+ 2z

]
− 2z2e−z

2

}
.

F
′′
(z) = K̃

{
v2
√
π

[
−2erf(z) +

4z3e−z
2

√
π
− 8ze−z

2

√
π

+ 2

]
+ e−z

2 [
4z3 − 4z

]}
.

F
′′′

(z) = K̃e−z
2 {
v2
[
−8z4 + 28z2 − 12

]
− 8z4 + 20z2 − 4

}
.

(76)
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The E-M expansion [10] for E
′X
C is (noting that because of the exponential

factor, F and all of the derivatives are 0 when evaluated at z =∞)

E
′X
C =

1

h̃

∫ ∞
0

dzF (z)− 1

2
F (0) +

1

2
F (0)− h̃B2

2
F
′
(0)− h̃3B4

24
F
′′′

(0) +O(h̃5),

(77)
where the Bernoulli numbers have the values B2 = 1

6
and B4 = − 1

30
. The

first term is most easily evaluated starting with the expression for F given
in eq. (74) and converting the r, z integral into polar coordinates.

1

h̃

∫ ∞
0

dzF (z) = πL2XΛ4γ(v)

∫ π
2

0

dφ

∫ ∞
0

dz

∫ ∞
0

drr
√
r2 + z2(1 +

v2z2

r2 + z2
)e−(r2+z2)

=
π2

2
L2XΛ4γ(v)

∫ π
2

0

dθ

∫ ∞
0

dss2 cos θ(1 + v2 sin2 θ)e−s
2

=
π2
√
π

8
L2XΛ4γ(v)(1 +

v2

3
).

(78)
The second term of Eq. (77) arises because of the effect of the prime

superscript in the summation sign of eq. (73). The remaining terms add up
to −( 1

XΛ
)3 1

720
(K̃ π

4
γ(v)[4(1 + v2) + 4v2 + 4v2] +O(h̃5). A similar result holds

for the last line of equation (69) but substituting L−X for X.
We now have all of the components of 〈H ′EM〉T .

〈H ′EM〉T = lim
Λ→∞

〈
H
′Λ
EM

〉
T
, (79)

where〈
H
′Λ
EM

〉
T

= γ(v)

{
L3π2

15β4

(
1 +

v2

3

)
+
π2
√
π

8
L3Λ4

(
1 +

v2

3

)
− L2π2

720X3
(1 + 3v2) + ...

}
.

(80)
The ellipsis denotes terms that are subleading, relative to the others, in 1

L

and e−L. Once again, we see that the energy of confined radiation does
not transform as a component of a Lorentz 4-vector. The nature of the
transformation differs from term to term. The Stefan-Boltzmann energy
is multiplied by (1 + v2

3
) which is an average of the mode factor obtained

classically in eq. (7). The divergent term (proportional to Λ4) transforms
the same way, but as observed in the discussion following eq. (28), this may
be an artifact of how we transform the regularization when going from the
rest-frame to the ′-frame. By contrast to the Stefan-Boltzmann term, the
leading order (finite part of) the Casimir energy is multiplied by (1 + 3v2).17

17In the discussion following eq. (28), it was also observed that for the two regulariza-
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Summary

It has been shown previously in [1], [2] that in a rectangular box with per-
fectly reflecting walls, the electromagnetic energy does not transform as a
component of a 4-vector18. In this paper, the analysis was extended to quan-
tum fields. We first looked at a one-dimensional scalar field theory, and found
that the average thermal energy of the confined field, transforms identically to
what we found in the classical theory of confined particles, E ′ = γ(v)(1+v2)E
where E ′ is the energy in a frame moving at velocity v relative to the rest
frame. This result holds for individual modes, and also for both ordinary
blackbody radiation and for the Casimir effect. Things are somewhat dif-
ferent for Quantum Electrodynamics. There, we see that the non-vectorial
factor is different for blackbody (Stefan-Bolzmann) radiation, which has a
correction factor of (1 + v2

3
) than for the (finite) Casimir energy which has a

correction factor of (1+3v2). The observation of the blackbody non-vectorial
transformation is not new, although it has tended to be buried in literature
concerning anisotropy of the cosmic microwave background (CMB). The ini-
tial papers ([12], [13], [14], [15]) pertaining to motion within a black body,
were primarily focused on the directional radiation which had been detected
in CMB experiments. Results have tended to be expressed in terms of ef-
fective temperatures rather than energies, although the work by Ford and
O’Connell [16] has helped clarify the relationship between derivations. All of
these authors implicitly or explicitly recognize that the directional asymme-
try is a consequence of the fact that the CMB dictates a preferred frame of
reference. However, the papers cited do not illustrate the precise local nature
of the Lorentz transformations as expressed in the previous sections.
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