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The purpose of this exercise is to demonstrate two equivalent formulations
of the LSZ theorem. We’ll do this by taking an example of the LSZ theorem
(the same one given in my notes on scattering) and working with it.

The statement in my scattering notes was:

〈pout1 , pout2 |S|pin1 , pin2 〉 =

[i

∫
d4x1e

−ipin1 ·x1(�x1 + m2)][i

∫
d4x2e

−ipin2 ·x2(�x2 + m2)]

[i

∫
d4x3e

+ipout1 ·x3(�x3 + m2)][i

∫
d4x4e

+ipout2 ·x4(�x4 + m2)]

G(x1, x2, x3, x4)

(1)

where the D’Alembertian �x is defined by �x ≡ ∂2
t −∂2

x−∂2
y −∂2

z . This LSZ
example is easily generalized to more ingoing and outgoing particles with
multiple masses and associated with other quantum fields.

The alternative formulation, which is to proven below, is

〈pout1 , pout2 |S|pin1 , pin2 〉 =

(−(pout1 )2 + m2)(−(pout2 )2 + m2)(−(pin1 )2 + m2)(−(pin2 )2 + m2)

[i

∫
d4x1e

−ipin1 ·x1 ][i

∫
d4x2e

−ipin2 ·x2 ][i

∫
d4x3e

+ipout1 ·x3 ][i

∫
d4x4e

+ipout2 ·x4 ]

G(x1, x2, x3, x4)
(2)

� In the first part of this exercise we’ll look at a much-simplified version
of the RHS of equation (1). Define f(p) by

f(p) =

∫ +∞

−∞
dxe−ipx∂xg(x) (3)
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where for now, x and p are 1-dimensional. Recall that ∂x is defined to
be the derivative with respect to x (in other words, d

dx
). Now assume

that the function g(x) drops rapidly to 0 when x→ ±∞.

– Prove that

f(p) = ip

∫ +∞

−∞
dxe−ipxg(x) (4)

Hint: Use ’integration by parts’, and if you don’t remember how
to do that, check wikipedia for a quick review.

– Now prove that∫ +∞

−∞
dxe−ipx∂2

xg(x) = −p2
∫ +∞

−∞
dxe−ipxg(x) (5)

Hint: In equation (3), substitute g(x) with ∂xg(x), then apply
equation (4) first to ∂xg and then again to g.

– Finally, prove that∫ +∞

−∞
dxe−ipx(∂2

x + m2)g(x) = (−p2 + m2)

∫ +∞

−∞
dxe−ipxg(x) (6)

� We’re almost ready to tackle the full RHS equation (1). Let’s do this
in two pieces.

– First, extend equation (6 ) to 4 dimensions. We simply let x and
p now be 4-vectors, and in the exponent, we’ll have −ip · x where
p ·x = x0p0−x1p1−x2p2−x3p3. We’ll also replace ∂2

x by ∂2 which
is defined by ∂2

x0
− ∂2

x1
− ∂2

x2
− ∂2

x3
.

Prove that∫ +∞

−∞
d4xe−ip·x(∂2 + m2)g(x) = (−p2 + m2)

∫ +∞

−∞
d4xe−ip·xg(x)

(7)
where as usual, p2 means p · p.

Hint: Simply write out the integral as
∫
dx0

∫
dx1

∫
dx2

∫
dx3 and

apply equation (6 ) to each integral.
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– The RHS of equation (1) is

[i

∫
d4x1e

−ipin1 ·x1(�x1 + m2)][i

∫
d4x2e

−ipin2 ·x2(�x2 + m2)]

[i

∫
d4x3e

+ipout1 ·x3(�x3 + m2)][i

∫
d4x4e

+ipout2 ·x4(�x4 + m2)]

G(x1, x2, x3, x4)

where the D’Alembertian �x is defined by �x ≡ ∂2
t −∂2

x−∂2
y−∂2

z .
Notice that the notation may be a bit confusing relative to the
notation we’ve used in previous equations. Now I have the vari-
ables x1, etc. each referring to a 4-vector, and for each of those 4-
vectors, I have denoted the components as (t, x, y, z) instead of the
components used in previous equations – namely (x0, x1, x2, x3).
If nothing else, the value of this exercise is for you to sort all
that out! Once you’ve done this, prove that the above expression
equals

(−(pout1 )2 + m2)(−(pout2 )2 + m2)(−(pin1 )2 + m2)(−(pin2 )2 + m2)

[i

∫
d4x1e

−ipin1 ·x1 ][i

∫
d4x2e

−ipin2 ·x2 ][i

∫
d4x3e

+ipout1 ·x3 ][i

∫
d4x4e

+ipout2 ·x4 ]

G(x1, x2, x3, x4)
(8)

Hint: Apply equation (7) to each of the 4 arguments.

� All of this might seem like a lot of warm-up. However, it’s all just been
a pretty straightforward application of Fourier transform technology.
What we’ve done is to rewrite the LSZ theorem equation (2)
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