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Start with a toy field theory with a potential energy term V (φ) = λφ3.
WHAT IS WRONG WITH THIS THEORY?

S[λ, J, φ] =

∫
d4x(

1

2
∂µφ∂

µφ− 1

2
m2φ2 + Jφ− λφ3) + iε (1)

In all expressions below, we are implicitly taking lime→0+ .

1 General theory of perturbative expansions

of non-free theories

This section follows section 4.1 in Kachelriess and Zee section 1.7 (especially
around page 48 entitled ”Perturbative Field Theory”) but I use a cubic in-
teraction term λφ3 and they focus on a quartic interaction λφ4. WHY?

� We are interested in the Green functions

Gλ(x1, ..., xn) =
1

Z[λ, 0]

∫
Dφφ(x1)...φ(xn)eiS[λ,J,φ]

= (−i)n 1

Z[λ, 0]

δnZ[λ, J ]

δJ(x1)...δJ(xn)
|J(x)=0

(2)

where

Z[λ, J ] =

∫
DφeiS[λ,J,φ] (3)

In what follows, I will sometimes substitute notation: δ
δJ(x1)

will become
δ

δJx1
and so on. The two expressions mean the same thing. The second

expression is meant to remind you of more familiar notation like ∂
∂Ji

.
See the Appendix for more information.
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� We can compute this analytically when λ = 0.

Z[0, J ] = e−
1
2
i
∫
d4yd4y′J(y)∆F (y−y′)J(y′) (4)

where

∆F (x− x′) =

∫
d4k

(2π)4

e−ik(x−x′)

k2 −m2 + iε
(5)

� Recall equation (2) and expand the action S[λ, J, φ] from equation (1)

Gλ(x1, ..., xn) =
1

Z[λ, 0]

∫
DΦφ(x1)...φ(xn)ei

∫
d4x( 1

2
∂µφ∂µφ− 1

2
m2φ2+Jφ−λφ3)+iε

=
1

Z[λ, 0]

∫
Dφφ(x1)...φ(xn)ei

∫
d4x( 1

2
∂µφ∂µφ− 1

2
m2φ2)+iεe−i

∫
d4xλφ3

=
1

Z[λ, 0]

∫
Dφφ(x1)...φ(xn)eiS[0,J,φ]e−iλ

∫
d4xφ3

(6)

� Suppose λ is small, so that we can Taylor-expand the term in red. The
Taylor expansion involves products of φ’s with the exponential of a
free (λ = 0) action. All of these are Green functions G0 and can be
computed analytically

Gλ(x1, ..., xn)

=
1

Z[λ, 0]

∫
Dφφ(x1)...φ(xn)eiS[0,J,φ](1−iλ

∫
d4xφ(x)3 − λ2

2

∫
d4xφ(x)3

∫
d4x′φ(x′)3 + ...)

= G0(x1, ..., xn)−iλ
∫
d4xG0(x, x, x, x1, ..., xn)

−λ
2

2

∫
d4xd4x′G0(x, x, x, x′, x′, x′, x1, ..., xn) + ...

(7)

2 Computing J derivatives of Z[0,J]

Recall the expression for Z[0,J ] given in equation (4).

Z[0, J ] = e−
1
2
i
∫
d4yd4y′J(y)∆F (y−y′)J(y′)

All Green functions are obtained by taking derivatives with respect to J and
then setting J = 0.
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� One derivative:

δ

δJ(x1)
(Z[0, J ]) = Z[0, J ][−i

∫
d4yJ(y)∆F (y − x1)] (8)

� Two derivatives: Apply one derivative to above.

δ2

δJ(x2)δJ(x1)
(Z[0, J ]) =

δ

δJ(x2)
(Z[0, J ][−i

∫
d4yJ(y)∆F (y − x1)])

= Z[0, J ][−i∆F (x2 − x1) + [−i
∫
d4yJ(y)∆F (y − x1)][−i

∫
d4yJ(y′)∆F (y′ − x2)]]

(9)

� More generally, it’s easiest to use diagrams.
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3 Diagrams

𝑥1 J
−𝑖 න𝑑4𝑦 𝐽 𝑦 ∆𝐹(𝑦 −𝑥1)

𝑥1 𝑥2
−𝑖 ∆𝐹(𝑥2−𝑥1)

𝑥1 J

DIAGRAM RULES

𝛿

𝛿𝐽𝑥2

𝛿

𝛿𝐽𝑥2

Z[0,J] = 
𝑥2 J

=
𝑥1 𝑥2

𝛿

𝛿𝐽𝑥2 𝑥1 𝑥2
=      0

Z[0,J]

When we set J=0, all lines with ‘J’ are set to 0, and Z is set to Z[0,0]

Examples

𝑥1 J

𝛿

𝛿𝐽𝑥2
Z[0,J]  

=   (
𝑥1 𝑥2

+
𝑥1 J 𝑥2 J

) Z[0,J]

𝑥1 J

𝛿

𝛿𝐽𝑥1
Z[0,J]  

=   (
𝑥1

+
𝑥1

J

J

) Z[0,J]

𝛿

𝛿𝐽𝑥1
Z[0,J]    =   

𝛿

𝛿𝐽𝑥1

Notice what happens when 
both J indices are the same 

𝛿

𝛿𝐽𝑥1

𝛿

𝛿𝐽𝑥1
Z[0,J]|𝐽=0 =   

𝑥1
Z[0,0]  When we set J=0 only the bubble and Z[0,0] are left
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More calculus

𝑥1 J 𝑥2 J

𝛿

𝛿𝐽𝑥

𝛿

𝛿𝐽𝑦 𝑥𝑥1 𝑦𝑥2 𝑦𝑥1 𝑥𝑥2
= +

J

J

𝑥

J

𝛿

𝛿𝐽𝑥1
=      3 J

𝑥

J

𝑥1

J
𝑥

J

𝑥1

𝛿

𝛿𝐽𝑥2
3 =      6

𝑥

J

𝑥1

𝑥2

J

𝑥

J

𝛿

𝛿𝐽𝑥1

𝛿

𝛿𝐽𝑥2

𝛿

𝛿𝐽𝑥3 𝑥

𝑥1

𝑥2=      6

𝑥3

Note the pre-factor 6 = 3!
J

4 Appendix: Discrete version

What follows will parallel Zee’s ”child problem” (see section 1.7 subsection
”Propagation: from here to there”).

The notation δ
δJx1

or alternatively δ
δJ(x1)

may be slightly unfamiliar. If

you find it confusing, it might help to think about all continuous variables
as being discrete. It also helps to stay in 1 dimension, rather than 4.

� x1 becomes 1D rather than 4D

� x1 becomes an integer i1, etc.

� integrals over d4xi become sums over i1, etc.

� J(x) becomes the vector J(i) sometimes written Ji.

�
δ

δJxi
or δ

δJ(xi)
becomes ∂

∂Ji

� ∆F (x− y) becomes the matrix Dij

� Z[λ, J ] becomes Zd[λ, J ]
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With these substitutions,

Z[0, J ] = e−
1
2
i
∫
d4yd4y′J(y)∆F (y−y′)J(y′)

becomes
Zd[0, J ] = e−

1
2
i
∑
ij JiJjDij

The first J derivative substitutes the expression

δ

δJ(x1)
(Z[0, J ]) = [−i

∫
d4yJ(y)∆F (y − x1)]Z[0, J ]

to become
∂

∂Ji1
(Zd[0, J ]) = [−i

∑
k

JkDki1 ]Zd[0, J ]

The expressions (in red) using discrete indices, should feel somewhat more
familiar than the expressions using continuous indices, so if you are ever
unsure about the calculus of continuous indices, make the above substitutions
and check results with discrete indices.
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