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Goals

• Set up problem 2.1 (free particle only)

• Explain notation and some basic facts about QM that are required for 
this problem

• Solve problem 2.1 (free particle only)

• Show the solution of problem 2.2 using the resolution of the identity



Problem 2.1 – Free particle

Problem statement: Find the propagator for the free particle, in terms
of the action for the free particle.  

Review of classical mechanics

𝑆𝑓𝑟𝑒𝑒(𝑞) = න
𝑡1

𝑡2

𝑑𝑡
𝑚 ሶ𝑞2

2

Notice that 𝒒′ ≡ 𝒒 𝒕𝟐 ; 𝒒 ≡ 𝒒(𝒕𝟏)

The Lagrangian is 𝐿 𝑞 =
𝑚 ሶ𝑞2

2
.  The momentum is 𝑝 = 𝑚 ሶ𝑞

We also need the Hamiltonian, 𝐻 𝑞, 𝑝 = 𝑝 ሶ𝑞 − 𝐿(𝑞, ሶ𝑞) = 
𝑝2

𝑚
−

𝑝2

2𝑚
= 

𝑝2

2𝑚



The Propagator
Comment: See solution to 2.2 for difference between propagator and Green’s function.   

Definition 𝐾 𝑞′, 𝑡′; 𝑞, 𝑡 = 𝑞′ exp[−𝑖(𝑡′ − 𝑡)𝐻 𝑞

What do the symbols on the right mean?

• In math, we start with a Hilbert space with vectors v,w etc.  In physics we use Dirac notation where those 
vectors become ۧ|𝑞 , etc. and we refer to these as states.

• In math, we speak of a linear operator ො𝑜 transforming a vector through the action ො𝑜v.  In Dirac notation we 

write ො𝑜 ۧ|𝑞 .

• The notation ۧ|𝑞 identifies a particular vector (state), as the unique vector with the property 𝑄 ۧ|𝑞 = 𝑞 ۧ|𝑞 .   
We say that “state ۧ|𝑞 is the eigenstate, with eigenvalue q of the operator 𝑄.”
• More generally, there are several states with the same eigenvalue.  We distinguish them by ۧ|𝑞, 𝛼 .
• Caveat: mathematical care is required for dealing with continuous-valued eigenvectors and eigenstates.
• The state label (e.g. “q”) is purely a convention that is context-dependent.

• Hilbert spaces have inner products.  We write (v,w).  In Dirac notation, we write 𝑣 𝑤 or with the previous 
states  𝑞′ 𝑞 .  The inner product of the state ۧ|𝑣 with the state 𝑂 ۧ|𝑤 is written as 𝑣 𝑂 𝑤 .
• So far, we haven’t explicitly talked about the meaning of ۦ𝑣|.  Mathematically it is the dual of ۧ|𝑣 .
• 𝑣 𝑤 = 𝑤 𝑣 *

• What is exp[−𝑖(𝑡′ − 𝑡)𝐻?     I + [−𝑖δ𝑡 𝐻] + 
[−𝑖𝛿𝑡]2

2!
𝐻2 + …   where “I” is the identity operator.  (cf. equation 2.8).  



Very important manipulation in Quantum Mechanics – basis expansion! 
(Resolution of the Identity)

• A Hilbert space has an orthonormal basis, Ƹ𝑒𝑖

• ( Ƹ𝑒𝑖, Ƹ𝑒𝑗) = 𝛿𝑖,𝑗

• Any vector v can be written in the form 𝑣 = σ𝑎𝑛 Ƹ𝑒𝑛 where 𝑎𝑛 = ( Ƹ𝑒𝑛, 𝑣).   So 𝑣 =
σ Ƹ𝑒𝑛, 𝑣 Ƹ𝑒𝑛.  In Dirac notation, this is ۧ|𝑣 = σ Ƹ𝑒𝑛 𝑣 ۧ| Ƹ𝑒𝑛 or ۧ|𝑣 = σ ۧ(| Ƹ𝑒𝑛 Ƹ𝑒𝑛 )𝑣 .   NOTICE 
THAT THIS EXPRESSION HAS THE FORM ۧ|𝒗 = 𝑶 ۧ|𝒗 s𝐨 𝑶 is the identity operator where 
𝑶 = σ ۧ|ො𝒆𝒏 ො𝒆𝒏|.            σۦ ۧ|ො𝒆𝒏 |ො𝒆𝒏ۦ = 𝑰

• There are an infinite number of possible bases.  Switch from basis Ƹ𝑒𝑖 to basis መ𝑓𝑖

by inserting the resolution of the identity. ൿ| መ𝑓 𝑗 = σ ۧ| Ƹ𝑒𝑛 ۦ Ƹ𝑒𝑛| ൿመ𝑓 𝑗

• If the basis is continuous, replace the sum by an integral

• Example bases: ۧ|𝑞 are normalized eigenvectors of 𝑄, ۧ|𝑝 are normalized 

eigenvectors of 𝑃 and ۧ|𝑞 = 
𝑑𝑝

2𝜋
ۧ|𝑝 𝑝 𝑞



APPLY THIS

Recall 𝐾 𝑞′, 𝑡′; 𝑞, 𝑡 = 𝑞′ 𝑒−𝑖𝛿𝑡
𝐻 𝑞 = ൻ𝑞′|𝑒−𝑖𝛿𝑡

𝑃2

2𝑚 ۧ|𝑞 = 
𝑑𝑝

2𝜋
ൻ𝑞′|𝑒−𝑖𝛿𝑡

𝑃2

2𝑚 ۧ|𝑝 𝑝 𝑞

The reason for using the resolution of the identity is to convert to a basis of 𝑃 eigenvectors so that we can use 

the property 𝑒−𝑖𝛿𝑡
𝑃2

2𝑚 ۧ|𝑝 = 𝑒−𝑖𝛿𝑡
𝑝2

2𝑚 ۧ|𝑝 .  Then the integral in red becomes 
𝑑𝑝

2𝜋
𝑒−𝑖𝛿𝑡

𝑝2

2𝑚 𝑞′ 𝑝 𝑝 𝑞 .

ONE OTHER IMPORTANT PROPERTY 𝑝 𝑞 = 𝑒−𝑖𝑝𝑞 and (complex conjugation) 𝑞′ 𝑝 = 𝑒𝑖𝑝𝑞
′

Finally 𝐾 𝑞′, 𝑡′; 𝑞, 𝑡 = 
𝑑𝑝

2𝜋
(𝑒−𝑖𝛿𝑡

𝑝2

2𝑚)(𝑒−𝑖𝑝 𝑞−𝑞′ ) = 
𝑑𝑝

2𝜋
𝑒−𝑖[𝛿𝑡

𝑝2

2𝑚
+𝑝 𝑞−𝑞′ ]

AN IMPORTANT IDENTITY ( see Example 2.1)        
𝒅𝒑

𝟐𝝅
𝒆−𝒊(𝒂𝒑

𝟐+𝒃𝒑) = 𝒆𝒊
𝒃𝟐

𝟒𝒂 [
𝟏

𝒂

𝒅𝒑

𝟐𝝅
𝒆−𝒊𝒑

𝟐
]

This is an example of a common kind of integral where an exponential appears with a quadratic argument.  
Ignore issues having to do with convergence of the integral (sometimes resolved by adding –iε to “a”).

𝐾 𝑞′, 𝑡′; 𝑞, 𝑡 = 𝑒𝑖
𝑚(𝑞−𝑞′)2

2𝛿𝑡 𝑁 where N is independent of q and q’   (𝑁 = [
2𝑚

𝛿𝑡

𝑑𝑝

2𝜋
𝑒−𝑖𝑝

2
])

Suppose δt is very small (required for Problem 2.1 even if Kachelriess doesn’t say so).  

Then  𝑡
𝑡+𝛿𝑡

𝑑𝑡′ ሶ𝑞2 ≃ 𝑡
𝑡+𝛿𝑡

𝑑𝑡′
[ 𝑞 𝑡+δt −𝑞 𝑡 ]2

𝛿𝑡2
=

[ 𝑞 𝑡+𝛿𝑡 −𝑞 𝑡 ]2

𝛿𝑡2
𝑡
𝑡+𝛿𝑡

𝑑𝑡′ =
[ 𝑞′−𝑞]2

𝛿𝑡

And 𝑒𝑖
𝑚(𝑞−𝑞′)2

2𝛿𝑡 ≃ 𝑒𝑖 𝑡
𝑡+𝛿𝑡

𝑑𝑡′
𝑚 ሶ𝑞2

2 = 𝑒𝑖𝑆𝑓𝑟𝑒𝑒 .    Finally 𝐾 𝑞′, 𝑡′; 𝑞, 𝑡 ≃ 𝑁 𝑒𝑖𝑆𝑓𝑟𝑒𝑒 .



Problem 2.2:  Properties of propagator K

First show 𝑖
𝑑

𝑑𝑡′
+

1

2𝑚

𝑑2

𝑑𝑥′2
− 𝑉 𝑥′ 𝐾 𝑥′, 𝑡′; 𝑥, 𝑡 = 0 (not what Kachelriess asks for!)

Recall 𝐾 𝑥′, 𝑡′; 𝑥, 𝑡 = 𝑥′ exp[−𝑖 𝑡′ − 𝑡 𝐻] 𝑥

• 𝑖
𝑑
𝑑𝑡′

𝐾 𝑥′, 𝑡′; 𝑥, 𝑡 = 𝑥′ Hexp[−𝑖 𝑡′ − 𝑡 𝐻] 𝑥 = 𝑥′
𝑷𝟐

𝟐𝒎
+ 𝑉 𝑄 exp −𝑖 𝑡′ − 𝑡 𝐻 𝑥

• 𝑥′ 𝑉 𝑄 exp −𝑖 𝑡′ − 𝑡 𝐻 𝑥 = 𝑽(𝒙′) 𝒙′ 𝒆𝒙𝒑 −𝒊 𝒕′ − 𝒕 𝑯 𝒙

•
𝟏

𝟐𝒎
𝑥 ′ 𝑷𝟐 exp −𝑖 𝑡 ′ − 𝑡 𝐻 𝑥 =

𝟏

𝟐𝒎

𝑑𝑝

2𝜋
𝑥′ 𝑝 𝑝 𝑷𝟐 exp −𝑖 𝑡 ′ − 𝑡 𝐻 𝑥 (resolution of identity)

=
𝟏

𝟐𝒎
න
𝒅𝒑

𝟐𝝅
𝒑 𝒆𝒙𝒑 −𝒊 𝒕′ − 𝒕 𝑯 𝒙 𝒑𝟐𝒆𝒊𝒑𝒙′

•
1

2𝑚

𝑑2

𝑑𝑥′
2 𝐾 𝑥′, 𝑡′; 𝑥, 𝑡 =

1

2𝑚

𝑑2

𝑑𝑥′
2 𝑥′ exp[−𝑖 𝑡′ − 𝑡 𝐻] 𝑥 =

1

2𝑚

𝑑2

𝑑𝑥′
2 

𝑑𝑝

2𝜋
𝑥′ 𝑝 𝑝 exp −𝑖 𝑡′ − 𝑡 𝐻 𝑥

= 
1

2𝑚

𝑑2

𝑑𝑥′
2 

𝑑𝑝

2𝜋
𝑥′ exp −𝑖 𝑡′ − 𝑡 𝐻 𝑝 𝑒𝑖𝑝𝑥′ =

−𝟏

𝟐𝒎

𝒅𝒑

𝟐𝝅
𝒙′ 𝒆𝒙𝒑 −𝒊 𝒕′ − 𝒕 𝑯 𝒑 𝒑𝟐 𝒆𝒊𝒑𝒙′

• -V(x’) 𝑲 𝒙′, 𝒕′; 𝒙, 𝒕

Bold colored terms add up to 0!



Problem 2.2 cont’d:  Properties of Green’s function G

Reference – Wikipedia article on “Propagator” (doesn’t seem explained by Kachelriess)

𝑮 𝒙′, 𝒕′, 𝒙, 𝒕 ≡ 𝜽 𝒕′ − 𝒕 𝑲 𝒙′, 𝒕′, 𝒙, 𝒕

[𝑖𝜕𝑡′ − 𝐻 𝑥′, 𝑡′ ]𝐺(𝑥′, 𝑡′, 𝑥, 𝑡) = 

{𝑖
𝑑

𝑑𝑡′
+

1

2𝑚

𝑑2

𝑑𝑥′
2
− 𝑉 𝑥′ }𝐺 𝑥′, 𝑡′, 𝑥, 𝑡

=
𝑑

𝑑𝑡′
𝜃 𝑡′ − 𝑡 𝐾 𝑥′, 𝑡′, 𝑥, 𝑡 − 𝑖𝜃 𝑡′ − 𝑡 {𝑖

𝑑

𝑑𝑡′
+

1

2𝑚

𝑑2

𝑑𝑥′
2
− 𝑉 𝑥′ }𝐾(𝑥′, 𝑡′, 𝑥, 𝑡)

The term in red is 0 from the first part of this problem.  Only the first term is new.  

But 
𝑑

𝑑𝑡′
𝜃 𝑡′ − 𝑡 = δ(t’-t),  and K(x’,t,x,t) = δ(x’-x), so

[𝒊𝝏𝒕′ −𝑯 𝒙′, 𝒕′ ]𝑮(𝒙′, 𝒕′, 𝒙, 𝒕) = δ(t’-t) δ(x’-x) 

which is why G is called a Green’s function.



Some random stuff

Adjoint operators

We have expressions like 𝑎 𝑂 𝑏 and we know what 𝑂 ۧ|𝑏 is. Does ۦ𝑎| 𝑂 mean anything?  It should 
for notational consistency.

|𝑎ۦ 𝑂 ≡ ൻ𝑎′| where | ൿ𝑎′ = 𝑂 | ۧ𝑎 .  We also employ the definition of adjoint as follows:

[ 𝑎 𝑂] |𝑏 = 𝑎 [ 𝑂† 𝑏 ] and 𝑂† is called the adjoint of 𝑂. Observables are always self-adjoint (the 
operator equivalent of real ), meaning 𝑂† = 𝑂.

An application of this idea is the expression 𝑝 𝑃 𝑞 .  It isn’t practical to operate with 𝑃 on the 
vector | ۧ𝑞 .  However, using the above information, we find that ۦ𝑝| 𝑃 = p 𝑝|, so 𝑝ۦ 𝑃 𝑞 = p p q .




