Kachelriess Problems 2.1 and 2.2

Bill Celmaster

July 2020

Revision 2

Goals

- Set up problem 2.1 (free particle only)
- Explain notation and some basic facts about QM that are required for this problem
- Solve problem 2.1 (free particle only)
- Show the solution of problem 2.2 using the resolution of the identity

Problem 2.1 – Free particle

Problem statement: Find the propagator for the free particle, in terms of the action for the free particle.

Review of classical mechanics

$$S_{free}(q) = \int_{t_1}^{t_2} dt \ \frac{m\dot{q}^2}{2}$$

Notice that $q' \equiv q(t_2)$; $q \equiv q(t_1)$ The Lagrangian is $L(q) = \frac{m\dot{q}^2}{2}$. The momentum is $p = m\dot{q}$ We also need the Hamiltonian, $H(q,p) = p\dot{q} - L(q,\dot{q}) = \frac{p^2}{m} - \frac{p^2}{2m} = \frac{p^2}{2m}$

The Propagator

Comment: See solution to 2.2 for difference between propagator and Green's function.

Definition
$$K(q', t'; q, t) = \langle q' | \exp[-i(t' - t)H | q \rangle$$

What do the symbols on the right mean?

- In math, we start with a Hilbert space with vectors v, w etc. In physics we use Dirac notation where those vectors become |q>, etc. and we refer to these as states.
- In math, we speak of a linear operator \hat{O} transforming a vector through the action $\hat{O}v$. In Dirac notation we write $\hat{O}|q\rangle$.
- The notation $|q\rangle$ identifies a particular vector (state), as the **unique** vector with the property $\hat{Q}|q\rangle = q|q\rangle$. We say that "state $|q\rangle$ is the eigenstate, with eigenvalue q of the operator \hat{Q} ."
 - More generally, there are several states with the same eigenvalue. We distinguish them by $|q, \alpha\rangle$.
 - Caveat: mathematical care is required for dealing with continuous-valued eigenvectors and eigenstates.
 - The state label (e.g. "q") is purely a convention that is context-dependent.
- Hilbert spaces have inner products. We write (v, w). In Dirac notation, we write $\langle v | w \rangle$ or with the previous states $\langle q' | q \rangle$. The inner product of the state $|v\rangle$ with the state $\hat{O} | w \rangle$ is written as $\langle v | \hat{O} | w \rangle$.
 - So far, we haven't explicitly talked about the meaning of $\langle v |$. Mathematically it is the dual of $|v\rangle$.
 - $\langle v | w \rangle = \langle w | v \rangle^*$
- What is $\exp[-i(t'-t)H?$ I + $[-i\delta t H] + \frac{[-i\delta t]^2}{2!}H^2$ + ... where "I" is the identity operator. (cf. equation 2.8).

Very important manipulation in Quantum Mechanics – basis expansion! (Resolution of the Identity)

- A Hilbert space has an orthonormal basis, \hat{e}^i
 - $(\hat{e}^i, \hat{e}^j) = \delta^{i,j}$
 - Any vector v can be written in the form $v = \sum a_n \hat{e}^n$ where $a_n = (\hat{e}^n, v)$. So $v = \sum (\hat{e}^n, v) \hat{e}^n$. In Dirac notation, this is $|v\rangle = \sum \langle \hat{e}^n |v\rangle |\hat{e}^n\rangle$ or $|v\rangle = \sum (|\hat{e}^n\rangle \langle \hat{e}^n |)v\rangle$. NOTICE THAT THIS EXPRESSION HAS THE FORM $|v\rangle = \hat{O}|v\rangle$ so \hat{O} is the identity operator where $\hat{O} = \sum |\hat{e}^n\rangle \langle \hat{e}^n|$. $\sum |\hat{e}^n\rangle \langle \hat{e}^n| = I$
- There are an infinite number of possible bases. Switch from basis \hat{e}^i to basis \hat{f}^i by inserting the resolution of the identity. $|\hat{f}^j\rangle = \sum |\hat{e}^n\rangle \langle \hat{e}^n | \hat{f}^j \rangle$
 - If the basis is continuous, <u>replace the sum by an integral</u>
- Example bases: $|q\rangle$ are normalized eigenvectors of \hat{Q} , $|p\rangle$ are normalized eigenvectors of \hat{P} and $|q\rangle = \int \frac{dp}{2\pi} |p\rangle \langle p|q\rangle$

APPLY THIS

Recall
$$K(q', t'; q, t) = \langle q' | e^{-i\delta t \hat{H}} | q \rangle = \langle q' | e^{-i\delta t \frac{\hat{P}^2}{2m}} | q \rangle = \int \frac{dp}{2\pi} \langle q' | e^{-i\delta t \frac{\hat{P}^2}{2m}} | p \rangle \langle p | q \rangle$$

The reason for using the resolution of the identity is to convert to a basis of \hat{P} eigenvectors so that we can use
the property $e^{-i\delta t \frac{\hat{P}^2}{2m}} | p \rangle = e^{-i\delta t \frac{\hat{P}^2}{2m}} | p \rangle$. Then the integral in red becomes $\int \frac{dp}{2\pi} e^{-i\delta t \frac{p^2}{2m}} \langle q' | p \rangle \langle p | q \rangle$.
ONE OTHER IMPORTANT PROPERTY $\langle p | q \rangle = e^{-ipq}$ and (complex conjugation) $\langle q' | p \rangle = e^{ipq'}$
Finally $K(q', t'; q, t) = \int \frac{dp}{2\pi} (e^{-i\delta t \frac{p^2}{2m}}) (e^{-ip(q-q')}) = \int \frac{dp}{2\pi} e^{-i(\delta t \frac{p^2}{2m} + p(q-q'))}$
AN IMPORTANT IDENTITY (see Example 2.1) $\int \frac{dp}{2\pi} e^{-i(ap^2 + bp)} = e^{i \frac{b^2}{4a}} [\frac{1}{\sqrt{a}} \int \frac{dp}{2\pi} e^{-ip^2}]$
This is an example of a common kind of integral where an exponential appears with a quadratic argument.
Ignore issues having to do with convergence of the integral (sometimes resolved by adding – is to "a").
 $K(q', t'; q, t) = e^{i \frac{m(q-q')^2}{2\delta t}} N$ where N is independent of q and q' $(N = [\sqrt{\frac{2m}{\delta t}} \int \frac{dp}{2\pi} e^{-ip^2}]$)
Suppose δ is very small (required for Problem 2.1 even if Kachelriess doesn't say so).
Then $\int_t^{t+\delta t} dt' \dot{q}^2 \simeq \int_t^{t+\delta t} dt' \frac{[q(t+\delta t)-q(t)]^2}{\delta t^2} = \frac{[q(t+\delta t)-q(t)]^2}{\delta t^2} \int_t^{t+\delta t} dt' = \frac{[q'-q]^2}{\delta t}$
And $e^{i \frac{m(q-q')^2}{2\delta t}} \approx e^{i \int_t^{t+\delta t} dt' \frac{mq^2}{2}} = e^{iSfree}$. Finally $K(q', t'; q, t) \simeq N e^{iSfree}$.

Problem 2.2: Properties of propagator K

$$\frac{\text{First show}}{\left(i\frac{d}{dt'} + \frac{1}{2m}\frac{d^2}{dx'^2} - V(x')\right)} K(x',t';x,t) = 0 \quad (\text{not what Kachelriess asks for!})$$
Recall $K(x',t';x,t) = \langle x' | \exp[-i(t'-t)H] | x \rangle$

• $i\frac{d}{dt'}K(x',t';x,t) = \langle x' | \operatorname{Hexp}[-i(t'-t)H] | x \rangle = \langle x' | \left[\frac{\tilde{p}^2}{2m} + V(\hat{Q})\right] \exp[-i(t'-t)H] | x \rangle$

• $\langle x' | \left[V(\hat{Q})\right] \exp[-i(t'-t)H] | x \rangle = V(x') \langle x' | \exp[-i(t'-t)H] | x \rangle$

• $\frac{1}{2m} \langle x' | \left[\tilde{p}^2\right] \exp[-i(t'-t)H] | x \rangle = \frac{1}{2m} \int \frac{dp}{2\pi} \langle x' | p \rangle \langle p | \left[\tilde{p}^2\right] \exp[-i(t'-t)H] | x \rangle$

(resolution of identity)

 $= \frac{1}{2m} \int \frac{dp}{2\pi} \langle p | \exp[-i(t'-t)H] | x \rangle = \frac{1}{2m} \frac{d^2}{dx'^2} \int \frac{dp}{2\pi} \langle x' | p \rangle \langle p | \exp[-i(t'-t)H] | x \rangle$

 $= \frac{1}{2m} \frac{d^2}{dx'^2} K(x',t';x,t) = \frac{1}{2m} \frac{d^2}{dx'^2} \langle x' | \exp[-i(t'-t)H] | x \rangle = \frac{1}{2m} \int \frac{dp}{2\pi} \langle x' | p \rangle \langle p | \exp[-i(t'-t)H] | x \rangle$

 $= \frac{1}{2m} \frac{d^2}{dx'^2} \int \frac{dp}{2\pi} \langle x' | \exp[-i(t'-t)H] | p \rangle e^{ipx'} = \frac{-1}{2m} \int \frac{dp}{2\pi} \langle x' | \exp[-i(t'-t)H] | p \rangle p^2 e^{ipx'}$

• $V(x') K(x',t';x,t)$

Bold colored terms add up to 0!

Problem 2.2 cont'd: Properties of Green's function G

Reference – Wikipedia article on "Propagator" (doesn't seem explained by Kachelriess) $G(x', t', x, t) \equiv \theta(t' - t)K(x', t', x, t)$

$$\begin{split} &[i\partial_{t'} - H(x',t')]G(x',t',x,t) = \\ &\{i\frac{d}{dt'} + \frac{1}{2m}\frac{d^2}{d{x'}^2} - V(x')\}G(x',t',x,t) \\ &= \left[\frac{d}{dt'}\theta(t'-t)\right]K(x',t',x,t) - i\theta(t'-t)\{i\frac{d}{dt'} + \frac{1}{2m}\frac{d^2}{d{x'}^2} - V(x')\}K(x',t',x,t) \end{split}$$

The term in red is 0 from the first part of this problem. Only the first term is new. But $\frac{d}{dt'}\theta(t'-t) = \delta(t'-t)$, and K(x',t,x,t) = $\delta(x'-x)$, so

 $[i\partial_{t'} - H(x',t')]G(x',t',x,t) = \delta(t'-t) \delta(x'-x)$

which is why G is called a Green's function.

Some random stuff

Adjoint operators

We have expressions like $\langle a | \hat{O} | b \rangle$ and we know what $\hat{O} | b \rangle$ is. Does $\langle a | \hat{O} \rangle$ mean anything? It should for notational consistency.

 $\langle a | \hat{O} \equiv \langle a' |$ where $| a' \rangle = \hat{O} | a \rangle$. We also employ the definition of adjoint as follows:

 $[\langle a | \hat{O}] | | b \rangle = \langle a | [\hat{O}^{\dagger} | b \rangle]$ and \hat{O}^{\dagger} is called the **adjoint** of \hat{O} . Observables are always **self-adjoint** (the operator equivalent of *real*), meaning $\hat{O}^{\dagger} = \hat{O}$.

An application of this idea is the expression $\langle p|\hat{P}|q\rangle$. It isn't practical to operate with \hat{P} on the vector $|q\rangle$. However, using the above information, we find that $\langle p|\hat{P} = p \langle p|$, so $\langle p|\hat{P}|q\rangle = p \langle p|q\rangle$.