Kachelriess Problems 2.1 and 2.2

Bill Celmaster

July 2020

Revision 2

Goals

- Set up problem 2.1 (free particle only)
- Explain notation and some basic facts about QM that are required for this problem
- Solve problem 2.1 (free particle only)
- Show the solution of problem 2.2 using the resolution of the identity

Problem 2.1 – Free particle

Problem statement: Find the propagator for the free particle, in terms of the action for the free particle.

Review of classical mechanics

$$
S_{free}(q) = \int_{t_1}^{t_2} dt \; \frac{m \dot{q}^2}{2}
$$

Notice that $q^{'}\equiv q(t_2)$; $q\equiv q(t_1)$ The Lagrangian is $L(q) =$ $m\dot{q}^{\textstyle 2}$ 2 . The momentum is $p = m\dot{q}$ We also need the Hamiltonian, $H(q,p) = p\dot{q} - L(q,\dot{q}) = 0$ p^2 \overline{m} − p^2 $2m$ = p^2 $2m$

The Propagator

Comment: See solution to 2.2 for difference between propagator and Green's function.

$$
\text{Definition} \qquad K(q^{'}, t^{'}; q, t) = \langle q' | \exp[-i(t^{'} - t)H|q \rangle
$$

What do the symbols on the right mean?

- In math, we start with a Hilbert space with vectors *v,w* etc. In physics we use Dirac notation where those vectors become $|q\rangle$, etc. and we refer to these as states.
- In math, we speak of a linear operator $\widehat{o}\;$ transforming a vector through the action \widehat{o} v. In Dirac notation we write $\widehat{\bm{O}}|\bm{\mathit{q}}\bm{\mathit{\rangle}}$.
- The notation $|q\rangle$ identifies a particular vector (state), as the **unique** vector with the property $\hat{Q}|q\rangle = q|q\rangle$. We say that "state $|q\rangle$ is the eigenstate, with eigenvalue *q* of the operator $\hat{0}$."
	- More generally, there are several states with the same eigenvalue. We distinguish them by $|q, \alpha\rangle$.
	- Caveat: mathematical care is required for dealing with continuous-valued eigenvectors and eigenstates.
	- The state label (e.g. "q") is purely a convention that is context-dependent.
- Hilbert spaces have inner products. We write (v,w) . In Dirac notation, we write $\langle v|w\rangle$ or with the previous states $\langle q^{'}|q\rangle$. The inner product of the state $|v\rangle$ with the state $\widehat{O}|w\rangle$ is written as $\langle v|\widehat{O}|w\rangle$.
	- So far, we haven't explicitly talked about the meaning of $\langle v|$. Mathematically it is the dual of $|v\rangle$.
	- $\langle v|w\rangle = \langle w|v\rangle^*$
- What is $\exp[-i(t'-t)H$? $1+[-i\delta t H] + \frac{[-i\delta t]^2}{2!}$ 2! H^2 + ... where "I" is the identity operator. (cf. equation 2.8).

Very important manipulation in Quantum Mechanics – basis expansion! (Resolution of the Identity)

- A Hilbert space has an orthonormal basis, $\hat{e}^{\hat{i}}$
	- $(\hat{e}^i, \hat{e}^j) = \delta^{i,j}$
	- Any vector *v* can be written in the form $v = \sum a_n \hat{e}^n$ where $a_n = (\hat{e}^n, v)$. So $v =$ $\sum (\hat{e}^n, v) \, \hat{e}^n$. In Dirac notation, this is $|v\rangle = \sum (\hat{e}^n |v\rangle |\hat{e}^n\rangle$ or $|v\rangle = \sum (|\hat{e}^n\rangle \langle \hat{e}^n|)v\rangle$. NOTICE THAT THIS EXPRESSION HAS THE FORM $|v\rangle = \hat{O}|v\rangle$ so \hat{O} is the identity operator where $\widehat{\boldsymbol{0}} = \sum |\widehat{e}^n\rangle\langle \widehat{e}^n|. \qquad\qquad \sum |\widehat{e}^n\rangle\langle \widehat{e}^n| = I$
- There are an infinite number of possible bases. Switch from basis \hat{e}^i to basis \hat{f}^i by inserting the resolution of the identity. $|\hat{f}^j\rangle = |\hat{\Sigma}|\hat{e}^n\rangle\langle\hat{e}^n|\hat{f}^j\rangle$
	- If the basis is continuous, replace the sum by an integral
- Example bases: $|q\rangle$ are normalized eigenvectors of \hat{Q} , $|p\rangle$ are normalized eigenvectors of \widehat{P} and $|q\rangle = \int \frac{dp}{2\pi}$ 2π $|p\rangle\langle p|q$

APPLY THIS

Recall
$$
K(q', t'; q, t) = \langle q' | e^{-i\delta t \hat{H}} | q \rangle = \langle q' | e^{-i\delta t \hat{H}} | q \rangle = \int \frac{dp}{2\pi} \langle q' | e^{-i\delta t \hat{H}} | p \rangle \langle p | q \rangle
$$

\nThe reason for using the resolution of the identity is to convert to a basis of \hat{P} eigenvectors so that we can use
\nthe property $e^{-i\delta t \frac{p^2}{2m}} | p \rangle = e^{-i\delta t \frac{p^2}{2m}} | p \rangle$. Then the integral in red becomes $\int \frac{dp}{2\pi} e^{-i\delta t \frac{p^2}{2m}} \langle q' | p \rangle \langle p | q \rangle$.
\n**ONE OTHER IMPORTANT PROPERTY** $\langle p | q \rangle = e^{-ipq}$ and (complex conjugation) $\langle q' | p \rangle = e^{ipq'}$
\nFinally $K(q', t'; q, t) = \int \frac{dp}{2\pi} (e^{-i\delta t \frac{p^2}{2m}}) (e^{-ip(q-q')}) = \int \frac{dp}{2\pi} e^{-i[\delta t \frac{p^2}{2m} + p(q-q')]}$
\n**AN IMPORTANT IDENTITY** (see Example 2.1) $\int \frac{dp}{2\pi} e^{-i[\delta t \frac{p^2}{2m} + p(q-q')]}$
\nThis is an example of a common kind of integral where an exponential appears with a quadratic argument.
\nIgnore issues having to do with convergence of the integral (sometimes resolved by adding –ie to "a").
\n $K(q', t'; q, t) = e^{\frac{im(q-q')^2}{2\delta t}} N$ where N is independent of q and q' $(N = \lfloor \sqrt{\frac{2m}{\delta t}} \int \frac{dp}{2\pi} e^{-ip^2} \rfloor$)
\nSuppose δt is very small (required for Problem 2.1 even if Kachelries doesn't say so).
\nThen $\int_{t}^{t+\delta t} dt' q^2 \approx \int_{t}^{t+\delta t} dt' \frac{[q(t+\delta t)-q(t)]^2}{\delta t^2} = \frac{[q(t+\delta t)-q(t)]^2}{\delta t^2} \int_{t}^{t+\delta t} dt' = \frac{[q'-q]^2}{\delta t}$
\nAnd $e^{\frac{i m(q-q')^2}{2\delta t}} \approx e^{i \int_{t}^{t+\delta$

Problem 2.2: Properties of propagator K

First show
$$
\left(i\frac{d}{dt'} + \frac{1}{2m}\frac{d^2}{dx'^2} - V(x')\right)K(x',t';x,t) = 0 \quad \text{(not what Kachelries asks for!)}
$$
\n
$$
\text{Recall } K(x',t';x,t) = \left\langle x'|\exp[-i(t'-t)H] | x \right\rangle
$$
\n
$$
\cdot i\frac{d}{dt'}K(x',t';x,t) = \left\langle x'|\text{Hexp}[-i(t'-t)H] | x \right\rangle = \left\langle x'|\left[\frac{\bar{p}^2}{2m} + V(\hat{Q})\right] \exp[-i(t'-t)H] | x \right\rangle
$$
\n
$$
\cdot \left\langle x'|\left[V(\hat{Q})\right] \exp[-i(t'-t)H] | x \right\rangle = V(x')\left\langle x'|\exp[-i(t'-t)H] | x \right\rangle
$$
\n
$$
\cdot \frac{1}{2m}\left\langle x'|\left[\hat{p}^2\right] \exp[-i(t'-t)H] | x \right\rangle = \frac{1}{2m} \int \frac{dp}{2\pi} \left\langle x'|p\rangle \langle p|\left[\hat{P}^2\right] \exp[-i(t'-t)H] | x \right\rangle \quad \text{(resolution of identity)}
$$
\n
$$
= \frac{1}{2m} \int \frac{dp}{2\pi} \left\langle p|\exp[-i(t'-t)H] | x \right\rangle p^2 e^{ipx'}
$$
\n
$$
\cdot \frac{1}{2m} \frac{d^2}{dx'^2} K(x',t';x,t) = \frac{1}{2m} \frac{d^2}{dx'^2} \left\langle x'|\exp[-i(t'-t)H] | x \right\rangle = \frac{1}{2m} \frac{d^2}{dx'^2} \int \frac{dp}{2\pi} \left\langle x'|p\rangle \langle p|\exp[-i(t'-t)H] | x \right\rangle
$$
\n
$$
= \frac{1}{2m} \frac{d^2}{dx'^2} \int \frac{dp}{2\pi} \left\langle x'|\exp[-i(t'-t)H] | p\rangle e^{ipx'} = \frac{-1}{2m} \int \frac{dp}{2\pi} \left\langle x'|\exp[-i(t'-t)H] | p\rangle p^2 e^{ipx'}\right\rangle
$$
\n
$$
\cdot \sqrt{x'} K(x',t';x,t)
$$

Bold colored terms add up to 0!

Problem 2.2 cont'd: Properties of Green's function G

Reference – Wikipedia article on "Propagator" (doesn't seem explained by Kachelriess) $G(x^{'}, t^{'}, x, t) \equiv \ \theta(t^{'}-t)K(x^{'}, t^{'}, x, t)$

$$
[i\partial_{t'} - H(x',t')]G(x',t',x,t) =
$$

\n
$$
\{i\frac{d}{dt'} + \frac{1}{2m}\frac{d^{2}}{dx'^{2}} - V(x')\}G(x',t',x,t)
$$

\n
$$
= \left[\frac{d}{dt'}\theta(t'-t)\right]K(x',t',x,t) - i\theta(t'-t)\{i\frac{d}{dt'} + \frac{1}{2m}\frac{d^{2}}{dx'^{2}} - V(x')\}K(x',t',x,t)
$$

The term in red is 0 from the first part of this problem. Only the first term is new. But $\frac{d}{dt}$ $\frac{a}{dt'}\theta(t'-t) = \delta(t'-t)$, and K(x',t,x,t) = $\delta(x'-x)$, so

 $[i\partial_{t'} - H(x', t')]G(x', t', x, t) = \delta(t'-t)\delta(x'-x)$

which is why G is called a Green's function.

Some random stuff

Adjoint operators

We have expressions like $\langle a|\hat{O}|b\rangle$ and we know what $\hat{O}|b\rangle$ is. Does $\langle a|\hat{O}$ mean anything? It should for notational consistency.

 $\langle a|\hat{O}\ \equiv\ \langle a^{'}|$ where $|a^{'}\rangle=\ \hat{O}\ |a\rangle.$ We also employ the definition of adjoint as follows:

 $[\langle a|\hat{O}]\,|\,|b\rangle = \langle a|[\hat{O}^+|b\rangle]$ and \hat{O}^+ is called the **adjoint** of \hat{O} . Observables are always **self-adjoint** (the operator equivalent of *real*), meaning $\hat{O}^{\dagger} = \hat{O}$.

An application of this idea is the expression $\langle p|\hat{P}|q\rangle$. It isn't practical to operate with \hat{P} on the vector $|q\rangle$. However, using the above information, we find that $\langle p|\hat{P} = p \langle p|,$ so $\langle p|\hat{P}|q \rangle = p \langle p|q \rangle$.