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FT
F [f ](k) ≡ f̃ (k) =

∫
dxeikx f (x)

Inverse FT
f (x) =

∫
dk
2π

e−ikx f̃ (k)

Delta function
δ(x) =

∫
dk
2π

e±ikx

so, for example

δ(x − x1) =

∫
dk
2π

e−ikxeikx1

thus
F̃ [δ(x − x1)] = eikx1

Derivatives
F [

df
dx

](k) = −ik f̃ (k)



Using FT to solve PDE continued

Let ∂µ∂µf (x) + m2f (x) = J(x)

Then in Fourier space

J̃(k) = (−k2
0 + k2

1 + k2
2 + k2

3 + m2)f̃ (k)

.
Solve in Fourier space

f̃ (k) = − J̃(k)

k · k −m2



Our first bit of physics – using W[J] to find the potential
energy of a charge

In the Appendix, we "derive"

W [J] = −V (J)τ

when J(t , ~x) is a function that can be written as
ΘH(t)ΘH(τ − t)Ĵ(~x). In other words, J(t , ~x) is 0 except in the
interval of time between 0 and τ . During that interval, J is
time-independent. Take τ large.
Now use W to compute the potential V for the case of a
massless scalar field (Coulomb potential) and a massive
scalar field (Yukawa potential).



W [J] for a source of separated "charges"

Ĵ(~x) = δ(~x − ~x1) + δ(~x − ~x2). Then vary the distance between x1
and x2 to find the energy’s dependence on separation.

Figure: A source with two charges
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Compute W[J]

From the delta-function identity

˜̂J(k) = (ei~k ·~x1 + ei~k ·~x2)

∫ τ

0
dte−ik0t

Start with Kachelriess equation 3.32

W [J] = −1
2

∫
d4k

(2π)4 J(k)∗
1

k2 −m2 + iε
J(k)

= −1
2

∫ τ

0
dt

∫ τ

0
dt ′

∫
dk0

2π
eik0te−ik0t ′

∫
d3k

(2π)3
ei~k ·(x1−x2)

k2 −m2 + iε
+ ...

= −1
2

∫ τ

0
dt
∫

dk0eik0t
∫ τ

0

dt ′

2π
e−ik0t ′

∫
d3k

(2π)3
ei~k ·(x1−x2)

k2 −m2 + iε
+ ...

≈ −1
2
τ

∫
d3k

(2π)3
ei~k ·(x1−x2)

−~k · ~k −m2 + iε
+ [(x1, x2)→ (x2, x1)]+

[(x1, x2)→ (x1, x1)] + [(x1, x2)→ (x2, x2)]

where the sequence in red has ≈ δ(k0) that sets k0 to ≈ 0 and
the ellipsis is explained in the last line



Computing the potential

Putting everything together, we have

−V (J)τ = W [J] ≈ −1
2
τ

∫
d3k

(2π)3
ei~k ·(x1−x2)

−~k · ~k −m2 + iε
+ ...

so

V (J) ≈ 1
2

∫
d3k

(2π)3
ei~k ·(x1−x2)

−~k · ~k −m2 + iε
+ ...

= −1
2

[
e−m|~x1−~x2|

4π|~x1 − ~x2|
] +−1

2
[

e−m|~x2−~x1|

4π|~x2 − ~x1|
]...

= − e−m|~x1−~x2|

4π|~x1 − ~x2|
+ self-energy terms ((x1, x1) and (x2, x2) terms)

The self-energy terms are separation-independent so can be
treated as a constant to be subtracted.



What does it all mean?

Let m→ 0. The potential energy dependence is the Coulomb
potential

VC(r) = E0(J) = − 1
4πr

When m 6= 0 we have the Yukawa potential

VY (r) = E0(J) = −e−mr

4πr

Yukawa matched this potential to the observed scale of
nuclear interactions, and predicted in the 1930’s that m ≈ 100
MeV.
Yukawa realized from field theory that m represents a particle
mass. The pion, with mass 140 MeV, was discovered in 1947.



Appendix – relate W [J] to a potential

Review.
1 Assert – Everything in nature can be inferred from the

scattering matrix (how particles ’bounce off each other’)
2 The scattering matrix is easily computed from G(x1, ..., xn).
3 (Generalizing 2.55 or see section 3.3)

G(x1, ..., xn) = N
∫
DΦΦ(x1)...Φ(xn)expi

∫
d4xL(x)

= (−i)n 1
Z [0]

δnZ [J]

δJ(x1)...δJ(xn)
|J(x)=0

where
4 Z [J] is the path integral for L[J] ≡ L+ J(x)Φ(x).
5

Z [J] = exp(iW [J])

So far, the only role for J is as a trick for computing Green
functions.



Appendix – relate W[J] to a potential, cont’d

BUT ... we can ask the question "what kind of physical system
would have a Lagrangian L[J] ≡ L+ J(x)Φ(x)?"

That insight comes from classical physics, especially from
Maxwell’s equations in the Lagrangian formalism.

L[J] is the Lagrangian for field theory where the field is coupled to
an external charged source J(x) (e.g. a heavy particle). That
theory has a Hamiltonian H[J].

Remember how we derived the path integral Z. When the
Hamiltonian is time-independent, Z is proportional to 〈0|e−iHτ |0〉
where the path integration is taken over a time range τ .

The vacuum state |0〉 is the state of lowest energy of H with
H|0〉 = E0|0〉 so Z = Ne−iE0τ .
This is true (if J is time-independent) also of the J-dependent
Hamiltonian H[J] so Z [J] = N [J〈0|e−iH[J]τ |0〉J ] = Ne−iE0(J)τ .



Appendix – relating W[J] to a potential, conclusion

Recap: E0[J] is the lowest energy of a system consisting of a
scalar field theory coupled to a time-independent charge
distribution, J.
The effect of J is to modify the system energy from what it
would have been in the absence of a source. So interpret the
energy-difference as the potential energy due to the source.

Z [J] ≡ exp(iW [J]) = exp(−iE0(J)τ)

so
W [J] = −E0(J)τ = −V (J)


