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Using FT to solve PDE continued

@ Let 9,0*f(x) + m?f(x) = J(x)
@ Then in Fourier space

J(k) = (—K& + k2 + K3 + k2 + mP) (k)

@ Solve in Fourier space



Ouir first bit of physics — using W[J] to find the potential

energy of a charge

@ In the Appendix, we "derive"

W[J] = —V(J)r

when J(t, X) is a function that can be written as

Ou(t)Ou(r — t)J(X). In other words, J(t, X) is 0 except in the
interval of time between 0 and 7. During that interval, J is
time-independent. Take 7 large.

@ Now use W to compute the potential V for the case of a
massless scalar field (Coulomb potential) and a massive
scalar field (Yukawa potential).



W|[J] for a source of separated "charges"

J(X) = 6(X — X1) + 6(X — X»). Then vary the distance between x;
and x» to find the energy’s dependence on separation.

Figure: A source with two charges
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Compute W[J]

@ From the delta-function identity

~
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@ Start with Kachelriess equation 3.32
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where the sequence in red has =~ d(kp) that sets kp to ~ 0 and
the ellipsis is explained in the last line
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Computing the potential

Putting everything together, we have
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The self-energy terms are separation-independent so can be
treated as a constant to be subtracted.



What does it all mean?

@ Let m — 0. The potential energy dependence is the Coulomb

potential
1

ar
@ When m # 0 we have the Yukawa potential

Ve(r) = Eo(J) =

e mr

Vy(r) = Eo(J) = —4—

@ Yukawa matched this potential to the observed scale of
nuclear interactions, and predicted in the 1930’s that m ~ 100
MeV.

@ Yukawa realized from field theory that m represents a particle
mass. The pion, with mass 140 MeV, was discovered in 1947.



Appendix — relate W[J] to a potential

Review.

@ Assert — Everything in nature can be inferred from the
scattering matrix (how particles 'bounce off each other’)

@ The scattering matrix is easily computed from G(xq, ..., Xn).
© (Generalizing 2.55 or see section 3.3)

G(x1, ..., Xn) =N/D¢¢(x1)...d)(xn)expifd“xc(x)

a1 5"Z[J]
= (=) Z[0] 6J(x1)-..0J(Xn) =0

where
Q Z|J] is the path integral for L[J] = L + J(x)P(x).
o
Z[J] = exp(iW[J])

So far, the only role for J is as a trick for computing Green
functions.



Appendix — relate W[J] to a potential, cont'd

BUT ... we can ask the question "what kind of physical system
would have a Lagrangian L[J] = £ + J(x)®(x)?"

That insight comes from classical physics, especially from
Maxwell’s equations in the Lagrangian formalism.

L[J] is the Lagrangian for field theory where the field is coupled to
an external charged source J(x) (e.g. a heavy particle). That
theory has a Hamiltonian H[J].

Remember how we derived the path integral Z. When the
Hamiltonian is time-independent, Z is proportional to (0|e~"7|0)
where the path integration is taken over a time range 7.
@ The vacuum state |0) is the state of lowest energy of H with
H|0) = E,|0) so Z = Ng~ o7,
@ This is true (if J is time-independent) also of the J-dependent
Hamiltonian H[J] so Z[J] = N[4(0|e~HI7|0) )] = Ne~EolI),



Appendix — relating W[J] to a potential, conclusion

@ Recap: Ey[J] is the lowest energy of a system consisting of a
scalar field theory coupled to a time-independent charge
distribution, J.

@ The effect of J is to modify the system energy from what it
would have been in the absence of a source. So interpret the
energy-difference as the potential energy due to the source.

°
Z[J] = exp(iW[J]) = exp(—iEy(J)T)

SO
WiJ] = —Eo(J)r = —V(J)



