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Definition of Green function:

G(x1, ...xn) ≡ 〈0|T{φ(x1)...φ(xn)}|0〉 (1)

where xi is a 4-vector and time-ordering is with respect to the
time component.
Definition of the path integral:

eiW [J] ≡ Z [J] ≡
∫
Dφei(S[φ]+

∫
d4xJ(x)φ(x)+iε) (2)

Deriving Green function from the path integral:

G(x1, ..., xn) =
q

Z [0]

∫
[Dφ]φ(x1)...φ(xn)ei(S[φ]+iε)

= (−i)n 1
Z [0]

δnZ [J]

δJ(x1)...δJ(xn)
|J(x)=0

(3)



Computing the Green’s function on a super-duper
computer

Simplify above to one dimension (time) and replace φ by q.

G(ta, tb) ==

∫
(
∏∞

ti dqti )(qtaqtb
∏

tj ei(L(q(tj ),q(tj+1))+iε))∫
(
∏∞

ti dqti )
∏

tj ei(L(q(tj ),q(tj+1))+iε)

The RHS is an infinite-dimensional integral. Actually, it isn’t correct
to label the integrals by a discrete index i , but we could set the
whole thing up as a limit.

Approximate it numerically by picking a finite number of integrals,∏N
i=0 dqti where ti include ta and tb.



Figure: Numerical approximation to the path integral
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Numerical approximation of path integral of F
Multi-dimensional integral of F, integrated (numerically) along each line. 
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What to do without a supercomputer

The lattice (using supercomputers) approach is an approximation
method only good for computing certain low-energy phenomena.

Other approximations can be done using the fact that W [J] can be
exactly computed when S[φ] is a 2nd degree polynomial in φ .

The source method: Compute the effect of an external source
on the field of interest (e.g. φ).
Perturbation theory: Assume that terms in eiS[φ] of higher
order in φ can be Taylor-expanded and treated as a series of
Green functions.

Example of W [J] when S[φ] is a 2nd degree polynomial in φ:
Let S[φ] =

∫
d4x(1

2∂µφ∂
µφ− 1

2m2φ2 + Jφ) + iε

Then W [J] = −1
2

∫ d4k
(2π)4 J(k)∗ 1

k2−m2+iεJ(k)



Applying the source method to obtain the Yukawa
potential

Last time, I started with the assumption that

W [J] = −V (J)τ

. I picked a source J representing two charged particles and then
derived an expression for W [J]. This led to the Yukawa potential.

Today let’s show
W [J] = −V (J)τ

.
So far, the only role for J is as a trick for computing Green
functions.

BUT ... we can ask the question "what kind of physical system
would have a Lagrangian L[J] ≡ L+ J(x)Φ(x)?"



How J changes the Hamiltonian

That insight comes from classical physics, especially from
Maxwell’s equations in the Lagrangian formalism.

L[J] is the Lagrangian for field theory where the field is coupled to
an external charged source J(x) (e.g. a heavy particle). That
theory has a Hamiltonian H[J].

Remember how we derived the path integral Z. When the
Hamiltonian is time-independent, Z is proportional to 〈0|e−iHτ |0〉
where the path integration is taken over a time range τ .

The vacuum state |0〉 is the state of lowest energy of H with
H|0〉 = E0|0〉 so Z = Ne−iE0τ .
This is true (if J is time-independent) also of the J-dependent
Hamiltonian H[J] so Z [J] = N [J〈0|e−iH[J]τ |0〉J ] = Ne−iE0(J)τ .



Relating W[J] to a potential

Recap: E0[J] is the lowest energy of a system consisting of a
scalar field theory coupled to a time-independent charge
distribution, J.
The effect of J is to modify the system energy from what it
would have been in the absence of a source. So interpret the
energy-difference as the potential energy due to the source.

Z [J] ≡ exp(iW [J]) = exp(−iE0(J)τ)

so
W [J] = −E0(J)τ = −V (J)

One important detail I skipped: The path integral represents
vacuum to vacuum transitions ONLY when iε is included AND
the time interval ranges from −∞ to +∞. The proper way to
deal with that is for the source J to be turned on at some point
and to remain constant for a duration of time τ , at which point
the source is turned off.



Annihilation and creation operators pp 44-46

Most treatments start with annihilation and creation operators
and then derive Green functions and eventually path integrals.
Kachelriess has the challenge of starting with path integrals,
then deriving Green functions and finally relating these to
annihilation and creation operators and particles.
This approach is indirect. Kachelriess hypothesizes a form for
the field (equation 3.48) with the operators and Hilbert space
specified by equation 3.49. This is the context where the
states in the Hilbert space are associated with particles.
He then shows that this hypothesis leads to the same
propagator he obtained with the path integral.
A certain amount of terminology is then introduced – notably
negative energy and virtual particles. I don’t find that
terminology helpful but it’s common. It has mostly to do with
the exponent of e±ik ·x in various expressions. The positivity of
energy has to do with the sign of the exponent and the
virtual’ness has to do with the value of k2.


