Exercise 1

Lorentz invariance of
S(®) = § [ dtdx[(0;9)? — (9xP)2 + fP2 — AdH(t, X)
@ Transformations:

where v(v) = .

@ Transforming £(®,0,®) — Chain rule:

00(t,x) _ d'((t, x), X(t, X))
at ot
_ 00O 9% ot
~ox ot ' ot ot
o0’ o0’
V) + ()




Exercise 1 transforming £ continued

@ Repeat chain rule:
Po(t,x)  020(t,x"), PPo'(t'x"), 5 5
FT 2 BTE (vy5(v)) + W(V (V)

2d/ (1 !
PO 2 (w)

@ Similarly:
92d(t, x) _ 02/ (t', x") 02 (', x"), »
— o —2w(V’Y (v)) - W(’Y (v))

an)/ t/,X/
L)



Exercise 1 transforming £ continued

@ Add to get the kinetic term:

Po(t,x)  Po(t,x)
ot? Ox?
o2V (P, x) 9P/ (t, X
= 72(‘/)(1 - Vz)( a(t/z ) - 85(/2 ))
_ azq,/(t/’ X’) 3249/(1‘/, X/)
- ot2 B Ox"2

@ Potential term
BO2(t, x) — AbA(t, x) = BO2(H, X') — MO (t, X)
@ Altogether

L(P,0,P)(t,x) = L(P',0,9) (', x")



Exercise 1 transforming the metric

@ The Jacobian is

7= &)
= () )

where we had to rewrite the transformation equations for x
and t in terms of x’ and t'.

@ The determinant of the Jacobian is

detT = ?(v)(1 — v3) =1
@ So
dtdx = |det.7|dt dx’ = dt’ dx’ (1)

@ Both the metric and the Lagrangian are Lorentz invariant so
this proves S[¢] = S'[¢'].



Exercise 2 using equation 3.4

@ Euler-Lagrange equation

oL oL

= (—=
0o “(8(8M<D))
@ Displaying terms with no derivatives of ¢
1
L(®,0,0) = S[B6% — 2% + ]
So % = B — 2)\¢3
@ Displaying terms with derivatives of ®

£(0.0,0) = L[O9) — (0x0)? + .

S0 0,(; 0t0rd — OxOx®

00 =



Exercise 2 continued

Putting both terms together, the Euler-Lagrange equation
becomes
Ob = fd — 203
or
(O-B)d = —2x¢3

The left side should be familiar from Kachelriess equation 3.9. But
the right side makes this equation difficult (impossible?) to solve in
terms of known special functions.



Exercise 3 — the Hamiltonian

@ Canonical momentum

oL
=50 ®

similarly to what we had in Exercise 2.
@ Hamiltonian

H=n0:d— L
= (019)% — *[(3 ®)% — (0xP)? + B — Ad7]

- 5[(8@) + (0x®)? — FO% + A0



Exercise 3: 5 <0and A =0

@ Equation 3.7 (standard massive scalar field theory)
L= %[(8@)2 + (0xP)? — mPd2)

@ Lagrangian with A =0
£= J1(O0) + (2x)? + 507]

So 8 = —m?, which shows that 3 < 0.

@ Hamiltonian
y

"= %[(M’)z*(axd’)z—ﬁq’z] = 51(09)* +(2®)* +-mP?) > 0

and the minimum is at (¢, x) = 0.



Exercise 3: 5 >0and A =0

@ Let &(t,x) = C. Then H = —5 C2. There is no minimum
because C can be chosen arbitrarily large.

@ That Lagrangian is physically unacceptable.

@ Notice that the Hamiltonian is unbounded from below, no
matter how small (and positive) 5 is. The system will exhibit
instability.



Exercise 4: Ranges of 5 and A for physically

acceptable Hamiltonians

@ Since the minimum kinetic energy occurs when ®(t, x) is a
real constant C, it suffices to examine the behavior of the
function #(C) = J[-BC? + \C4].

@ Find extrema: Solve dc(—BC? + \C*) =0, i.e.,

(=8 +2XC?)C =0.

o If % < 0 then there is one extremum, C = 0. If 8 < 0, that
extremum is a minimum. See Figure 1.

o If % > 0 then there are 3 extrema. If 8 > 0, the Hamiltonian is
bounded from below. See Figure 2.

e This is interesting because the lowest energies are at ¢ # 0.
In such a theory, things tend to settle down into one of the two
minima, thus ’breaking’ the symmetry around the middle.



Figure: s = -2, A=2
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Figure 2
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