Exercise 1

Lorentz invariance of $\mathcal{S}(\Phi) = \frac{1}{2} \int dt dx [(\partial_t \Phi)^2 - (\partial_x \Phi)^2 + \beta \Phi^2 - \lambda \Phi^4](t, x)$

• Transformations:

$$
t'(t,x) = \gamma(v)(t+vx)
$$

x'(t,x) = \gamma(v)(vt+x)

$$
\Phi(t,x) = \Phi'(t',x')
$$

where $\gamma(\mathsf{v}) = \frac{1}{1-\mathsf{v}^2}$. **•** Transforming $\mathcal{L}(\Phi, \partial_{\mu}\Phi)$ – Chain rule:

$$
\frac{\partial \Phi(t, x)}{\partial t} = \frac{\partial \Phi'(t'(t, x), x'(t, x))}{\partial t}
$$

$$
= \frac{\partial \Phi'}{\partial x'} \frac{\partial x'}{\partial t} + \frac{\partial \Phi'}{\partial t'} \frac{\partial t'}{\partial t}
$$

$$
= \frac{\partial \Phi'}{\partial x'} \nu \gamma(v) + \frac{\partial \Phi'}{\partial t'} \gamma(v)
$$

KORKAPRASKASK ST VOOR

Exercise 1 transforming $\mathcal L$ continued

• Repeat chain rule:

$$
\frac{\partial^2 \Phi(t, x)}{\partial t^2} = 2 \frac{\partial^2 \Phi'(t', x')}{\partial t' \partial x'} (v \gamma^2(v)) + \frac{\partial^2 \Phi'(t', x')}{\partial x'^2} (v^2 \gamma^2(v)) + \frac{\partial^2 \Phi'(t', x')}{\partial t'^2} (\gamma^2(v))
$$

• Similarly:

$$
-\frac{\partial^2 \Phi(t, x)}{\partial x^2} = -2 \frac{\partial^2 \Phi'(t', x')}{\partial t' \partial x'} (v \gamma^2(v)) - \frac{\partial^2 \Phi'(t', x')}{\partial x'^2} (\gamma^2(v)) - \frac{\partial^2 \Phi'(t', x')}{\partial t'^2} (v^2 \gamma^2(v))
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Exercise 1 transforming $\mathcal L$ continued

• Add to get the kinetic term:

$$
\frac{\partial^2 \Phi(t, x)}{\partial t^2} - \frac{\partial^2 \Phi(t, x)}{\partial x^2}
$$

= $\gamma^2(v)(1 - v^2)(\frac{\partial^2 \Phi'(t', x')}{\partial t'^2} - \frac{\partial^2 \Phi'(t', x')}{\partial x'^2})$
= $\frac{\partial^2 \Phi'(t', x')}{\partial t'^2} - \frac{\partial^2 \Phi'(t', x')}{\partial x'^2}$

• Potential term

$$
\beta \Phi^2(t,x) - \lambda \Phi^4(t,x) = \beta \Phi^{\prime 2}(t',x') - \lambda \Phi^{\prime 4}(t',x')
$$

• Altogether

$$
\mathcal{L}(\Phi,\partial_\mu\Phi)(t,x)=\mathcal{L}(\Phi',\partial_\mu\Phi')(t',x')
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | K 9 Q Q

Exercise 1 transforming the metric

• The Jacobian is

$$
\mathcal{J} = \begin{pmatrix} \frac{\partial t}{\partial t'} & \frac{\partial t}{\partial x'} \\ \frac{\partial x}{\partial t'} & \frac{\partial x}{\partial x'} \end{pmatrix}
$$

$$
= \begin{pmatrix} \gamma(\mathsf{v}) & -\mathsf{v}\gamma(\mathsf{v}) \\ -\mathsf{v}\gamma(\mathsf{v}) & \gamma(\mathsf{v}) \end{pmatrix}
$$

where we had to rewrite the transformation equations for *x* and t in terms of x' and t' .

• The determinant of the Jacobian is

$$
det \mathcal{J} = \gamma^2(v)(1-v^2) = 1
$$

So

$$
dtdx = |det \mathcal{J}|dt'dx' = dt'dx'
$$
 (1)

• Both the metric and the Lagrangian are Lorentz invariant so this proves $S[\Phi] = S'[\Phi']$. **KORKAPKKERKE PROVIDE**

Exercise 2 using equation 3.4

• Euler-Lagrange equation

$$
\frac{\partial \mathcal{L}}{\partial \Phi} = \partial_{\mu} \left(\frac{\partial \mathcal{L}}{\partial (\partial_{\mu} \Phi)} \right)
$$
 (2)

Displaying terms with no derivatives of Φ

$$
\mathcal{L}(\Phi, \partial_{\mu}\Phi) = \frac{1}{2} [\beta \Phi^{2} - \lambda \Phi^{4} + ...]
$$

So
$$
\frac{\partial \mathcal{L}}{\partial \Phi} = \beta \Phi - 2\lambda \Phi^3
$$

Displaying terms with derivatives of Φ

$$
\mathcal{L}(\Phi, \partial_{\mu}\Phi) = \frac{1}{2} [(\partial_t \Phi)^2 - (\partial_x \Phi)^2 + ...]
$$

So
$$
\partial_{\mu}(\frac{\partial \mathcal{L}}{\partial(\partial_{\mu}\Phi)}) = \partial_t \partial_t \Phi - \partial_x \partial_x \Phi
$$

Putting both terms together, the Euler-Lagrange equation becomes

$$
\Box \Phi = \beta \Phi - 2\lambda \Phi^3
$$

or

$$
(\Box - \beta)\Phi = -2\lambda\Phi^3
$$

The left side should be familiar from Kachelriess equation 3.9. But the right side makes this equation difficult (impossible?) to solve in terms of known special functions.

KORK ERKERK ADAM

Exercise 3 – the Hamiltonian

• Canonical momentum

$$
\pi = \frac{\partial \mathcal{L}}{\partial_t \Phi} = \partial_t \Phi
$$

similarly to what we had in Exercise 2.

• Hamiltonian

$$
\mathcal{H} = \pi \partial_t \Phi - \mathcal{L}
$$

= $(\partial_t \Phi)^2 - \frac{1}{2} [(\partial_t \Phi)^2 - (\partial_x \Phi)^2 + \beta \Phi^2 - \lambda \Phi^4]$
= $\frac{1}{2} [(\partial_t \Phi)^2 + (\partial_x \Phi)^2 - \beta \Phi^2 + \lambda \Phi^4]$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Exercise 3: β < 0 and $\lambda = 0$

Equation 3.7 (standard massive scalar field theory)

$$
\mathcal{L} = \frac{1}{2} [(\partial_t \Phi)^2 + (\partial_x \Phi)^2 - m^2 \Phi^2]
$$

• Lagrangian with $\lambda = 0$

$$
\mathcal{L} = \frac{1}{2} [(\partial_t \Phi)^2 + (\partial_x \Phi)^2 + \beta \Phi^2]
$$

So $\beta = -m^2$, which shows that $\beta < 0$.

• Hamiltonian

$$
\mathcal{H} = \frac{1}{2}[(\partial_t \Phi)^2 + (\partial_x \Phi)^2 - \beta \Phi^2] = \frac{1}{2}[(\partial_t \Phi)^2 + (\partial_x \Phi)^2 + m^2 \Phi^2] \ge 0
$$

and the minimum is at $\Phi(t, x) = 0$.

- Let $\Phi(t, x) = C$. Then $\mathcal{H} = -\frac{\beta}{2}C^2$. There is no minimum because *C* can be chosen arbitrarily large.
- That Lagrangian is physically unacceptable.
- Notice that the Hamiltonian is unbounded from below, no matter how small (and positive) β is. The system will exhibit instability.

KORK ERKERK ADAM

Exercise 4: Ranges of β and λ for physically acceptable Hamiltonians

- **•** Since the minimum kinetic energy occurs when $\Phi(t, x)$ is a real constant *C*, it suffices to examine the behavior of the function $\mathcal{H}(C) = \frac{1}{2}[-\beta C^2 + \lambda C^4]$.
- Find extrema: Solve $\partial_C(-\beta C^2 + \lambda C^4) = 0$, i.e., $(-\beta + 2\lambda C^2)C = 0.$
- If $\frac{\lambda}{\beta} \leq 0$ then there is one extremum, $C = 0$. If $\beta < 0$, that extremum is a minimum. See Figure 1.
- If $\frac{\lambda}{\beta} > 0$ then there are 3 extrema. If $\beta > 0$, the Hamiltonian is bounded from below. See Figure 2.
	- This is interesting because the lowest energies are at $\Phi \neq 0$. In such a theory, things tend to settle down into one of the two minima, thus 'breaking' the symmetry around the middle.

Figure 1

Figure: $\beta = -2$, $\lambda = 2$

Figure 2

Figure: $\beta = 2$, $\lambda = 2$

メロトメ 御 トメ 君 トメ 君 トー 君 2990