
Exercise 1

Lorentz invariance of
S(Φ) = 1

2

∫
dtdx [(∂t Φ)2 − (∂x Φ)2 + βΦ2 − λΦ4](t , x)

Transformations:

t ′(t , x) = γ(v)(t + vx)

x ′(t , x) = γ(v)(vt + x)

Φ(t , x) = Φ′(t ′, x ′)

where γ(v) = 1
1−v2 .

Transforming L(Φ, ∂µΦ) – Chain rule:

∂Φ(t , x)

∂t
=
∂Φ′(t ′(t , x), x ′(t , x))

∂t

=
∂Φ′

∂x ′
∂x ′

∂t
+
∂Φ′

∂t ′
∂t ′

∂t

=
∂Φ′

∂x ′
vγ(v) +

∂Φ′

∂t ′
γ(v)



Exercise 1 transforming L continued

Repeat chain rule:

∂2Φ(t , x)

∂t2 = 2
∂2Φ′(t ′, x ′)
∂t ′∂x ′

(vγ2(v)) +
∂2Φ′(t ′, x ′)

∂x ′2
(v2γ2(v))

+
∂2Φ′(t ′, x ′)

∂t ′2
(γ2(v))

Similarly:

−∂
2Φ(t , x)

∂x2 = −2
∂2Φ′(t ′, x ′)
∂t ′∂x ′

(vγ2(v))− ∂2Φ′(t ′, x ′)
∂x ′2

(γ2(v))

−∂
2Φ′(t ′, x ′)
∂t ′2

(v2γ2(v))



Exercise 1 transforming L continued

Add to get the kinetic term:

∂2Φ(t , x)

∂t2 − ∂2Φ(t , x)

∂x2

= γ2(v)(1− v2)(
∂2Φ′(t ′, x ′)

∂t ′2
− ∂2Φ′(t ′, x ′)

∂x ′2
)

=
∂2Φ′(t ′, x ′)

∂t ′2
− ∂2Φ′(t ′, x ′)

∂x ′2

Potential term

βΦ2(t , x)− λΦ4(t , x) = βΦ′2(t ′, x ′)− λΦ′4(t ′, x ′)

Altogether

L(Φ, ∂µΦ)(t , x) = L(Φ′, ∂µΦ′)(t ′, x ′)



Exercise 1 transforming the metric

The Jacobian is

J =

(
∂t
∂t ′

∂t
∂x ′

∂x
∂t ′

∂x
∂x ′

)
=

(
γ(v) −vγ(v)
−vγ(v) γ(v)

)
where we had to rewrite the transformation equations for x
and t in terms of x ′ and t ′.
The determinant of the Jacobian is

detJ = γ2(v)(1− v2) = 1

So
dtdx = |detJ |dt ′dx ′ = dt ′dx ′ (1)

Both the metric and the Lagrangian are Lorentz invariant so
this proves S[Φ] = S′[Φ′].



Exercise 2 using equation 3.4

Euler-Lagrange equation

∂L
∂Φ

= ∂µ(
∂L

∂(∂µΦ)
) (2)

Displaying terms with no derivatives of Φ

L(Φ, ∂µΦ) =
1
2

[βΦ2 − λΦ4 + ...]

So ∂L
∂Φ = βΦ− 2λΦ3

Displaying terms with derivatives of Φ

L(Φ, ∂µΦ) =
1
2

[(∂t Φ)2 − (∂x Φ)2 + ...]

So ∂µ( ∂L
∂(∂µΦ) ) = ∂t∂t Φ− ∂x∂x Φ



Exercise 2 continued

Putting both terms together, the Euler-Lagrange equation
becomes

�Φ = βΦ− 2λΦ3

or
(�− β)Φ = −2λΦ3

The left side should be familiar from Kachelriess equation 3.9. But
the right side makes this equation difficult (impossible?) to solve in
terms of known special functions.



Exercise 3 – the Hamiltonian

Canonical momentum

π =
∂L
∂t Φ

= ∂t Φ

similarly to what we had in Exercise 2.
Hamiltonian

H = π∂t Φ− L

= (∂t Φ)2 − 1
2

[(∂t Φ)2 − (∂x Φ)2 + βΦ2 − λΦ4]

=
1
2

[(∂t Φ)2 + (∂x Φ)2 − βΦ2 + λΦ4]



Exercise 3: β < 0 and λ = 0

Equation 3.7 (standard massive scalar field theory)

L =
1
2

[(∂t Φ)2 + (∂x Φ)2 −m2Φ2]

Lagrangian with λ = 0

L =
1
2

[(∂t Φ)2 + (∂x Φ)2 + βΦ2]

So β = −m2, which shows that β < 0.
Hamiltonian

H =
1
2

[(∂t Φ)2+(∂x Φ)2−βΦ2] =
1
2

[(∂t Φ)2+(∂x Φ)2+m2Φ2] ≥ 0

and the minimum is at Φ(t , x) = 0.



Exercise 3: β > 0 and λ = 0

Let Φ(t , x) = C. Then H = −β
2 C2. There is no minimum

because C can be chosen arbitrarily large.
That Lagrangian is physically unacceptable.
Notice that the Hamiltonian is unbounded from below, no
matter how small (and positive) β is. The system will exhibit
instability.



Exercise 4: Ranges of β and λ for physically
acceptable Hamiltonians

Since the minimum kinetic energy occurs when Φ(t , x) is a
real constant C, it suffices to examine the behavior of the
function H(C) = 1

2 [−βC2 + λC4].
Find extrema: Solve ∂C(−βC2 + λC4) = 0, i.e.,
(−β + 2λC2)C = 0.
If λβ ≤ 0 then there is one extremum, C = 0. If β < 0, that
extremum is a minimum. See Figure 1.
If λβ > 0 then there are 3 extrema. If β > 0, the Hamiltonian is
bounded from below. See Figure 2.

This is interesting because the lowest energies are at Φ 6= 0.
In such a theory, things tend to settle down into one of the two
minima, thus ’breaking’ the symmetry around the middle.



Figure 1

Figure: β = −2, λ = 2
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Figure 2

Figure: β = 2, λ = 2
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