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Fermat’s principle

q
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Best path Best path

Light travels along the path that takes the least time.  Trick – look at the mirror reflection. 
Only the best path goes in a straight line through the ‘mirror’.

Generalization.  Physical systems evolve along their best paths.  For light, the metric is proper time.
For other systems, the metric is the action.  

Feynman asks “does it smell the neighboring paths to find out whether or not they have more action?”
(reference Vol II chapter 19 of Feynman Lectures or https://www.feynmanlectures.caltech.edu/II_19.html)

https://www.feynmanlectures.caltech.edu/II_19.html
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q(t,0) = Q(t) (the BEST path)

q(t,0.1) = Q(t)+0.1h(t)

q(t,0.2) = q(t,0)+0.2h(t) = Q(t)+0.2h(t)
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Example of q(t,e) with fixed endpoints with very lousy drawing skills. 

Compute S(Q+eh).  If Q(t) is an extremum, then     𝜕𝑆(𝑄 +  eh)

𝜕e
= 0 

This is true for each choice of h in which case the integrand of (1.3) is 0.
Leads to the Euler-Lagrange equations (1.4)
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Simple example, a spring (linear harmonic oscillator) 

The Lagrangian (to be verified shortly) is 𝑳 =
𝟏

𝟐
𝒎 ሶ𝒒𝟐 −

𝟏

𝟐
𝒌𝒒𝟐

Suppose Q is an extremum.  Then for all h which are 0 at the boundaries,

where

𝑆(𝑄 + eh) =  𝑑𝑡(
1

2
𝑚(

𝑑(𝑄 𝑡 + eh 𝑡 )

𝑑𝑡
)2 −  

1

2
𝑘(𝑄 𝑡 + eh 𝑡 )2) 

𝑑𝑆(𝑄 + eh)

𝑑e
|e=0 = 0  

𝑆   =  𝑑𝑡 
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The term with red should be integrated by parts, noting that 

 
𝑑 𝑄 𝑡  

𝑑𝑡
  

𝑑 h 𝑡  

𝑑𝑡
 =  

𝑑(
𝑑𝑄
𝑑𝑡

h)

𝑑𝑡
−  

𝑑2𝑄

𝑑𝑡2
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𝑑𝑆(𝑄 + eh)

𝑑e
|e=0  =   𝑑𝑡(𝑚 

𝑑 𝑄 𝑡  

𝑑𝑡
 (
𝑑 h 𝑡  

𝑑𝑡
) −  𝑘 𝑄 𝑡   h 𝑡  )
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𝑇 

𝑇 𝑑𝑓

𝑑𝑡
= 𝑓 𝑇 − 𝑓 𝑇  and



So
𝑑𝑆(𝑄 + eh)

𝑑e
|e=0  =  𝑑𝑡  −𝑚

𝑑2𝑄

𝑑𝑡2
h  −  𝑘𝑄h  

𝑇2

𝑇1

 

=  𝑑𝑡  −𝑚
𝑑2𝑄

𝑑𝑡2
  −  𝑘𝑄 h

𝑇2

𝑇1

 

Since LHS = 0 for all h we get −𝑚
𝑑 𝑄

𝑑𝑡 
− 𝑘𝑄 = 0

which is the familiar harmonic oscillator equation.  So we have the right Lagrangian.



Important notation stuff (keep this as reference)

• What is the meaning of L(q, ሶ )
• Define L(x,y) as a function of 2 parameters x,y then evaluate x at q(t) and y at ሶ (t).

So  L(q, ሶ ) assigns values to a hypersurface in 2D (x,y)-space. (x and y are both paths)

• What is the meaning of
𝜕𝐿   , ሶ  

𝜕 ሶ 
?

•
𝜕𝐿  𝑥,𝑦 

𝜕 𝑦
|𝑥= ,𝑦= ሶ 

• What is 𝛿 𝑡 ?
• 𝛿  𝑡 = [q(t) + eh(t)]-[q(t)] = eh(t).  You keep e non-zero and h arbitrary until the VERY END of the calculation.

At the END, you let e go to 0 and you explore consequences of h being arbitrary.  
Usually, you end up dividing by e which leads to a proper derivative.  Also, you ignore all terms that 
show up with higher order of e (e.g. 𝜀 ).

• What is 𝛿 ሶ 𝑡 ?
• 𝛿 ሶ 𝑡 = [ ሶ (t) + e ሶh (t)] – [ ሶ (t) ] = e ሶh (t).  Then same interpretation as above. 

• What is 𝛿𝑂  ?

• 𝛿𝑂  = O(q + eh) – O(q).  We write lim
e→0

 

𝜀
𝑂  =  𝑑𝑥h 𝑥

𝑂   
  𝑥 

.  See Problem 1.6.

• What is 𝛿𝑂(q, ሶ )?
• 𝛿𝑂(q, ሶ ) = O(q + eh, ሶ (t) + e ሶh (t)) - O(q, ሶ ).  Then same interpretation as above.  Notice

𝑂  + eh, ሶ + ሶh − 𝑂  , ሶ =
𝜕𝑂 𝑥,𝑦

𝜕𝑥
eh |𝑥= ,𝑦= ሶ +

𝜕𝑂 𝑥,𝑦

𝜕𝑦
e ሶh |𝑥= ,𝑦= ሶ =

𝝏𝑶 𝒒, ሶ𝒒

𝝏𝒒
𝒒 +

𝝏𝑶 𝒒, ሶ𝒒

𝝏 ሶ𝒒
ሶ𝒒



Problem 1.6

Take O(q) = q(x).  Then

For the two expressions in blue to be equal, 
𝑂 𝑞 
𝑞 𝑥′ 

must equal (x-x’).

lim
e→0

1

𝜀
 𝑂    =   𝑑𝑥h(𝑥)

𝑂( )

 (𝑥)
 

 𝑑𝑥′h(𝑥′)
𝑂( )

 (𝑥′)
=   𝑑𝑥′h(𝑥′)

[  𝑥 ]

 (𝑥′)
= lim

e→0

1

e
   𝑥 + eh 𝑥 −   𝑥  = h(𝑥) 



Example:  Spring

• Step 1: Ƽ𝑝 =
𝜕 

 

 
𝑚 ሶ𝑞 −

 

 
𝑘𝑞  

𝜕 ሶ𝑞
= 𝑚 ሶ 

• Step 2: 𝐿 =
1

 
𝑚 ሶ  −

1

 
𝑘  =

�ු�  

 𝑚
−

𝑘𝑞 

 
, ෨𝐿 =

𝑝  

 𝑚
−

𝑘𝑞 

 

• Step 3: 𝐻 = 𝑝 ሶ −
𝑝  

 𝑚
−

𝑘𝑞 

 
=

𝑝 

𝑚
−

𝑝  

 𝑚
−

𝑘𝑞 

 
=

𝑝  

 𝑚
+

𝑘𝑞 

 

• Step 4: 𝑆𝐻  , 𝑝 = 𝑎
𝑏
𝑑𝑡 𝑝 ሶ −

𝑝  

 𝑚
+

𝑘𝑞 

 
)

• Step 5 (Hamilton’s equations):
𝑑𝑞

𝑑𝑡
=

𝜕𝐻

𝜕𝑝
= 
𝜕 

𝑝  

 𝑚
+
𝑘𝑞 

 
 

𝜕𝑝
= 

𝑝

𝑚
[same result as step 1];

𝑑𝑝

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞
= −

𝜕 
𝑝  

 𝑚
+
𝑘𝑞 

 
 

𝜕𝑞
= -kq

Combine these two equations to get m ሷ = -kq which is the spring equation of motion

Hamilton’s equations:  Another related approach

Introduce an auxiliary variable, p.  Then define an action S’ which is a function of two variables q and p.  If 
you do this right, then you find the  same extrema as before.  

• Step 1 – Define a variable Ƽ𝑝 =
𝜕𝐿

𝜕 ሶ𝑞

• Step 2 – Rewrite the original Lagrangian in terms of Ƽ𝑝 and q as L(q, Ƽ𝑝 
• Step 3 – Define ෙ𝐻 (q, Ƽ𝑝 ) = Ƽ𝑝 ሶ - L(q, Ƽ𝑝 )   {usually the t-dependence is only implicit in the variables q and Ƽ𝑝 }. 

Now, define H(q,p) as ෙ𝐻 (q, Ƽ𝑝 ) but replacing ሶ by some function of q and Ƽ𝑝,  then substituting p for Ƽ𝑝.

• Step 4 – Define a new action 𝑆𝐻  , 𝑝 = 𝑎
𝑏
𝑑𝑡 𝑝 ሶ − 𝐻  , 𝑝  and find extrema by taking q = 𝑄 + h1, 𝑝 = 𝑃 + h 

• Step 5 – Solve  ሶ =
𝜕𝐻

𝜕𝑝
ሶ𝑝 = −

𝜕𝐻

𝜕𝑞



• H is known as the Hamiltonian.  In the example, it is 
positive.

• Generally, H is independent of time. 
• Important for the history of quantum mechanics.  If we have 

a function O(q,p) then 
𝑑𝑂 𝑞,𝑝 

𝑑𝑡
=

𝜕𝑂

𝜕𝑞

𝑑𝑞

𝑑𝑡
+

𝜕𝑂

𝜕𝑝

𝑑𝑝

𝑑𝑡

Use Hamilton’s equations to replace items in red so  
𝒅𝑶 𝒒,𝒑 

𝒅𝒕

= 
𝜕𝑂

𝜕𝑞

𝜕𝐻

𝜕𝑝
−

𝜕𝑂

𝜕𝑝

𝜕𝐻

𝜕𝑞
≡ 𝑶,𝑯

These are Poisson brackets and become commutators in 
quantum mechanics.

Notes


