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Where all this is heading
Path-integral approach is based on ordinary complex functions and not operators.  

Basic tools are

• Equations from classical mechanics, especially involving the Lagrangian and 
sometimes the Hamiltonian

• Methods of differential equations, especially
• Linear, second-order with small higher-order terms
• Perturbative expansions for the higher-order terms
• Green’s functions for a delta-function source
• Correlation functions as derived from functional dependence on general source terms

• What we won’t need (except for initial setup of the path-integral formalism)
• Operator theory
• Commutation relations
• Eigenvectors and eigenvalues

• Really???
• Nahhhh …. But for many of the interesting results of field theory, this ‘traditional’ quantum mechanics 

stuff takes a back seat



Green’s functions are useful for solving Euler-Lagrange equations 
(non-rigorous, non-engineering)

Notation: ⎕𝜑 ≡
𝜕2𝜑

𝜕𝑡2
−

𝜕2𝜑

𝜕𝑥2

Simple equation:  ⎕𝜑 = 𝐽

Formal solution:  𝜑 = ⎕−1𝐽; ⎕−1 is called a Green’s function. Often, J is a delta-function.

Perturbation theory (preliminary to Feynman diagrams)
Add a small term to the simple equation. ⎕𝜑(𝜆, 𝑡, 𝑥) − 𝜆𝜑2 𝜆, 𝑡, 𝑥 = 𝐽(𝑡, 𝑥). The solution depends on the small parameter 𝜆.

Expand the solution in powers of 𝜆.   𝜑 = 𝜑 𝜆, 𝑡, 𝑥 = 𝜑0(𝑡, 𝑥) + 𝜆𝜑1(𝑡, 𝑥) + 𝜆2𝜑2 (𝑡, 𝑥) + ⋯

The general solution is 𝜑 𝜆, 𝑡, 𝑥 = ⎕−1[𝐽 𝑡, 𝑥 + 𝜆𝜑2 𝜆, 𝑡, 𝑥 ]

𝜑0 𝑡, 𝑥 = 𝜑|𝜆=0 = 𝜑 0, 𝑡, 𝑥 ; solution is 𝜑0 = ⎕−1𝐽

𝜑1 𝑡, 𝑥 =
𝜕𝜑

𝜕𝜆
|𝜆=0 =

𝜕

𝜕𝜆
⎕−1 𝐽 𝑡, 𝑥 + 𝜆𝜑2 𝜆, 𝑡, 𝑥 |𝜆=0 =

𝜕

𝜕𝜆
⎕−1 𝜆𝜑2 𝜆, 𝑡, 𝑥 |𝜆=0 = ⎕−1 𝜑2 0, 𝑡, 𝑥 =

⎕−1 (𝜑0)
2 𝑡, 𝑥

So 𝜑1 𝑡, 𝑥 = ⎕−1[⎕−1𝐽⎕−1𝐽]

2 𝜑2 =
𝜕2𝜑

𝜕𝜆2
|𝜆=0 =

𝜕

𝜕𝜆2
⎕−1 𝐽 𝑡, 𝑥 + 𝜆𝜑2 𝜆, 𝑡, 𝑥 |𝜆=0 = ⎕−1 4𝜑0 𝑡, 𝑥 𝜑1(𝑡, 𝑥)

So 𝜑2= 2⎕−1(⎕−1𝐽⎕−1[⎕−1𝐽⎕−1𝐽])



What is ⎕−1?  It’s easiest to introduce this for a 1D problem.
(Following Kachelriess with m=1)

Notation: 𝐷𝑥 ≡
𝑑2𝑥

𝑑𝑡2
+ 𝜔2𝑥

Simple equation: 𝐷𝑥 = 𝐽

Formal solution: 𝑥 = 𝐷−1𝐽; 𝐷−1 is called a Green’s function and written as G.  Often, J is a delta-function.

What does 𝑥 = 𝐷−1𝐽 mean? 𝑥 𝑡 = 𝑑𝑡′𝐷−1 𝑡, 𝑡′ 𝐽(𝑡′) It’s like matrix multiplication.

Kachelriess derives 𝐷−1 (equation 1.34) (I use 𝐷−1 instead of G). 𝐷−1 𝑡, 𝑡′ = 
𝑑𝛺

2𝜋

𝑒−𝑖𝛺(𝑡−𝑡
′)

𝜔2−𝛺2

First verify this is right.   We want to show that  𝑫𝑫−𝟏𝑱 = 𝑱.

𝐷 𝐷−1𝐽 =
𝑑2

𝑑𝑡2
+ 𝜔2 ′𝑑𝑡 

𝑑𝛺

2𝜋

𝑒−𝑖𝛺 𝑡−𝑡′

𝜔2−𝛺2 𝐽 𝑡′ = ′𝑑𝑡 
𝑑𝛺

2𝜋

𝜔2−𝛺2 𝑒−𝑖𝛺 𝑡−𝑡′

𝜔2−𝛺2 𝐽 𝑡′ = 𝑑𝑡′𝛿 𝑡′ − 𝑡 𝐽 𝑡′ = 𝐽(𝑡)

using 
𝑑2

𝑑𝑡2
𝑒−𝑖𝛺 𝑡−𝑡′ = −𝛺2𝑒−𝑖𝛺 𝑡−𝑡′ and 

𝑑𝛺

2𝜋
𝑒−𝑖𝛺 𝑡−𝑡′ = 𝛿(𝑡 − 𝑡′)

Unfortunately, 𝑫−𝟏 𝒕, 𝒕′ = 
𝒅𝜴

𝟐𝝅

𝒆−𝒊𝜴(𝒕−𝒕
′)

𝝎𝟐−𝜴𝟐 is NOT well-defined!  The integrand diverges at 𝜴 = ±𝝎.

Resolve this by adding ±𝑖𝜀 to the denominator, integrating with Cauchy’s residue theorem and taking  𝜀 to 0.  Still 
satisfies 𝑫𝑫−𝟏𝑱 = 𝑱 but you get different 𝐷−1 (negative leads to the retarded Green’s function) depending on the sign 
of ±𝑖𝜀 and thus different solutions.  Impose causality to pick the right sign (retarded).



Problem 1.8a

Show 𝜗 𝑡 = −
1

2𝜋𝑖
lim
𝜀→0+

∞−
+∞

𝑑𝜔
𝑒−𝑖𝜔𝑡

𝜔+𝑖𝜀
where 𝜗 𝑡 =0 if t < 0 and 𝜗 𝑡 =1 if t > 0

Calculus of residues:  t < 0, choose upper contour.

The integral on the entire semicircle (R → ∞)  = integral on real line = 𝜗 𝑡 . 

But there is no pole within the semicircle so total integral = 0.

When t > 0, choose the lower contour and as before,
the integral on the curve is 0.  However, there is a pole
in the semicircle.  The residue at 𝜔 = −𝑖𝜀 is 𝑒−𝜀𝑡

Cauchy’s theorem says the integral’s value is
so

𝜗 𝑡 =   
−1

2𝜋𝑖
lim
𝜀→0+

−2𝜋𝑖 𝑒−𝜀𝑡 = 1

x

𝜃

R

𝑒−𝑖𝜔𝑡

𝜔
=
𝑒𝑖|𝑡|𝑅(𝑐𝑜𝑠𝜃+𝑖 𝑠𝑖𝑛𝜃)

𝑅(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)
=

𝑒𝑖 𝑡 𝑅𝑐𝑜𝑠𝜃𝑒− 𝑡 𝑅 𝑠𝑖𝑛𝜃

𝑅(𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃)
goes to 0 as R→ ∞

x



Takeaways
• Perturbation theory has lots of terms with ⎕−1.  Turns out you can draw diagrams where J is a vertex 

and ⎕−1 is a line.  (Like Feynman diagrams)

• Each ⎕−1 involves an integral with a quadratic term in the denominator. (Like Feynman propagator)

• You need to pick which ⎕−1 you want.  Requires adding ±𝑖𝜀 to the denominator.  Causality implies 
+ 𝑖𝜀.



Relativity

𝑥𝜇 = 𝑡, 𝑥, 𝑦, 𝑧
𝑥𝜇 = (𝑡, −𝑥, −𝑦, −𝑧)

Frame transformations for motion in the x-direction are 

𝑥′ 𝑥, 𝑦, 𝑧, 𝑡 = 𝛾 𝑣 𝑥 + 𝑣𝑡 … where 𝛾 𝑣 =
1

1−𝑣2

𝑡′(𝑥, 𝑦, 𝑧, 𝑡) = 𝛾 𝑣 𝑡 + 𝑣𝑥

y’(x,y,z,t) = y

z’(x,y,z,t) = z

𝑥𝜇𝑥𝜇 ≡ σ𝜇=0
𝜇=3

𝑥𝜇𝑥𝜇 is frame-invariant.  Similarly with other 4-vectors.

This can be generalized to multi-index objects.

Our senses are frame-invariant so ultimately the things we measure must be frame-invariant.  Such variables 
are called scalars. 𝑥𝜇𝑥𝜇 is a scalar.


