Kalchereiss Chapters 1.2 and 1.3

Bill Celmaster

June 2020

Where all this is heading

Path-integral approach is based on ordinary complex functions and *not* operators.

Basic tools are

- Equations from classical mechanics, especially involving the Lagrangian and sometimes the Hamiltonian
- Methods of differential equations, especially
	- Linear, second-order with small higher-order terms
	- Perturbative expansions for the higher-order terms
	- Green's functions for a delta-function source
	- Correlation functions as derived from functional dependence on general source terms
- What we won't need (*except for initial setup of the path-integral formalism*)
	- Operator theory
	- Commutation relations
	- Eigenvectors and eigenvalues
- Really???
	- Nahhhh …. But for many of the interesting results of field theory, this 'traditional' quantum mechanics stuff takes a back seat

Green's functions are useful for solving Euler-Lagrange equations

(non-rigorous, non-engineering)

Notation: $\Box \varphi \equiv \frac{\partial^2 \varphi}{\partial t^2}$ $rac{\partial^2 \varphi}{\partial t^2} - \frac{\partial^2 \varphi}{\partial x^2}$ ∂x^2 Simple equation: $\Box \varphi = I$ Formal solution: $\varphi = \Box^{-1} J; \Box^{-1}$ is called a Green's function. Often, J is a delta-function.

Perturbation theory (preliminary to *Feynman diagrams***)**

Add a small term to the simple equation. $\Box\varphi(\lambda,t,x)-\lambda\varphi^2(\lambda,t,x)=J(t,x)$. The solution depends on the small parameter λ . Expand the solution in powers of λ . $\varphi = \varphi(\lambda, t, x) = \varphi_0(t, x) + \lambda \varphi_1(t, x) + \lambda^2 \varphi_2(t, x) + \cdots$ The general solution is $\varphi(\lambda, t, x) = \Box^{-1}[J(t, x) + \lambda \varphi^2(\lambda, t, x)]$ $\varphi_0 (t,x) = |\varphi|_{\lambda = 0} = \varphi (0,t,x)$; solution is $\varphi_0 = \Box^{-1} J$ $\frac{\varphi_1(t,x)}{\Box - 1} = \frac{\partial \varphi}{\partial \lambda} \big[\frac{1}{\lambda = 0} = \frac{\partial}{\partial \lambda} \Box^{-1} \big[J(t,x) + \lambda \varphi^2(\lambda,t,x) \big] \big|_{\lambda = 0} = \frac{\partial}{\partial \lambda} \Box^{-1} \big[\lambda \varphi^2(\lambda,t,x) \big] \big|_{\lambda = 0} = \Box^{-1} \big[\varphi^2(0,t,x) \big] =$ $\Box^{-1}[(\varphi_0)^2]^\alpha_t$, x So $\varphi_1(t,x) = \Box^{-1}[\Box^{-1}J \Box^{-1}J]$

$$
2 \varphi_2 = \frac{\partial^2 \varphi}{\partial \lambda^2} |_{\lambda=0} = \frac{\partial}{\partial \lambda^2} \Box^{-1} [J(t, x) + \lambda \varphi^2(\lambda, t, x)]|_{\lambda=0} = \Box^{-1} [4 \varphi_0(t, x) \varphi_1(t, x)]
$$

So $\varphi_2 = 2 \Box^{-1} (\Box^{-1} J \Box^{-1} [\Box^{-1} J \Box^{-1} J])$

What is \Box^{-1} ? It's easiest to introduce this for a 1D problem.

(Following Kachelriess with m=1)

Notation: $Dx \equiv \frac{d^2x}{dt^2}$ $\frac{a^2x}{dt^2} + \omega^2 x$ Simple equation: $Dx = I$ Formal solution: $x = D^{-1}J$; D^{-1} is called a Green's function and written as G. Often, J is a delta-function. What does $x = D^{-1}J$ mean? $x(t) = \int dt' D^{-1}(t, t')J(t')$ It's like matrix multiplication. Kachelriess derives D^{-1} (equation 1.34) *(I use* D^{-1} *instead of G).* $D^{-1}(t, t') = \int \frac{d\Omega}{2\pi}$ 2π $e^{-i\Omega(t-t')}$ $\omega^2-\Omega^2$ First verify this is right. **We want to show that** $DD^{-1}J = J$. $D(D^{-1}J) = \frac{d^2}{dt^2}$ $\frac{d^2}{dt^2}$ + ω^2) $\int dt'$ $\int \frac{d\Omega}{2\pi}$ 2π $e^{-i\Omega(t-t)}$ $\int \frac{d\Omega}{\omega^2 - \Omega^2} f(t') = \int dt' \int \frac{d\Omega}{2\pi}$ 2π $\omega^2-\Omega^2$)e^{-i $\Omega(t-t)$} $\int_{0}^{2} e^{-2t(t-t)} f(t') = \int dt' \delta(t'-t) f(t') = f(t)$ using $\frac{d^2}{dt^2}$ $\frac{d^2}{dt^2}e^{-i\Omega(t-t')} = -\Omega^2e^{-i\Omega(t-t')}$ and $\int \frac{d\Omega}{2\pi}$ $\frac{d\Omega}{2\pi}e^{-i\Omega(t-t')}=\delta(t-t')$ Unfortunately, $D^{-1}(t,t') = \int \frac{d\Omega}{2\pi}$ 2π $e^{-i\Omega(t-t')}$ $\frac{1}{\omega^2-\Omega^2}$ is NOT well-defined! The integrand diverges at $\Omega = \pm \omega$.

Resolve this by adding $\pm i\varepsilon$ to the denominator, integrating with Cauchy's residue theorem and taking $\,\varepsilon$ to 0. Still satisfies $DD^{-1}J=J$ but you get different D^{-1} (negative leads to the retarded Green's function) depending on the sign of $\pm i\varepsilon$ and thus different solutions. Impose causality to pick the right sign (retarded).

Problem 1.8a

Takeaways

- Perturbation theory has lots of terms with \square^{-1} . Turns out you can draw diagrams where J is a vertex and ⎕−1 is a line. (*Like Feynman diagrams*)
- Each ⎕−1 involves an integral with a quadratic term in the denominator. (*Like Feynman propagator*)
- You need to pick which \square^{-1} you want. Requires adding $\pm i \varepsilon$ to the denominator. Causality implies $+ i\varepsilon$.

Relativity

 $x^{\mu} = (t, x, y, z)$ $x_{\mu} = (t, -x, -y, -z)$

Frame transformations for motion in the x-direction are

 $\chi'(x, y, z, t) = \gamma(v)(x + vt)$... where $\gamma(v) = \frac{1}{\sqrt{1-v^2}}$ $\overline{1-v^2}$ $t'(x, y, z, t) = \gamma(v)(t + vx)$ *y'(x,y,z,t) = y z'(x,y,z,t) = z*

 $x^{\mu}x_{\mu} \equiv \sum_{\mu=0}^{\mu=3} x^{\mu}x_{\mu}$ is frame-invariant. Similarly with other 4-vectors. This can be generalized to multi-index objects.

Our senses are frame-invariant so **ultimately** the things we measure must be frame-invariant. Such variables are called **scalars.** $x^{\mu}x_{\mu}$ is a scalar.