Kalchereiss Chapters 1.2 and 1.3

Bill Celmaster

June 2020

Where all this is heading

Path-integral approach is based on ordinary complex functions and <u>not</u> operators.

Basic tools are

- Equations from classical mechanics, especially involving the Lagrangian and sometimes the Hamiltonian
- Methods of differential equations, especially
 - Linear, second-order with small higher-order terms
 - <u>Perturbative</u> expansions for the <u>higher-order terms</u>
 - Green's functions for a <u>delta-function source</u>
 - Correlation functions as derived from functional dependence on general source terms
- What we won't need (*except for initial setup of the path-integral formalism*)
 - Operator theory
 - Commutation relations
 - Eigenvectors and eigenvalues
- Really???
 - Nahhhh But for many of the interesting results of field theory, this 'traditional' quantum mechanics stuff takes a back seat

Green's functions are useful for solving Euler-Lagrange equations

(non-rigorous, non-engineering)

Notation: $\Box \varphi \equiv \frac{\partial^2 \varphi}{\partial t^2} - \frac{\partial^2 \varphi}{\partial x^2}$ Simple equation: $\Box \varphi = J$ Formal solution: $\varphi = \Box^{-1}J$; \Box^{-1} is called a Green's function. Often, J is a delta-function.

Perturbation theory (preliminary to Feynman diagrams)

Add a small term to the simple equation. $[]\varphi(\lambda, t, x) - \lambda\varphi^2(\lambda, t, x) = J(t, x)$. The solution depends on the small parameter λ . Expand the solution in powers of λ . $\varphi = \varphi(\lambda, t, x) = \varphi_0(t, x) + \lambda\varphi_1(t, x) + \lambda^2\varphi_2(t, x) + \cdots$ The general solution is $\varphi(\lambda, t, x) = []^{-1}[J(t, x) + \lambda\varphi^2(\lambda, t, x)]$ $\varphi_0(t, x) = \varphi|_{\lambda=0} = \varphi(0, t, x)$; solution is $\varphi_0 = []^{-1}J$ $\varphi_1(t, x) = \frac{\partial \varphi}{\partial \lambda}|_{\lambda=0} = \frac{\partial}{\partial \lambda}[]^{-1}[J(t, x) + \lambda\varphi^2(\lambda, t, x)]|_{\lambda=0} = \frac{\partial}{\partial \lambda}[]^{-1}[\lambda\varphi^2(\lambda, t, x)]|_{\lambda=0} = []^{-1}[\varphi^2(0, t, x)] = []^{-1}[[\varphi_0)^2(t, x)]$ So $\varphi_1(t, x) = []^{-1}[[]^{-1}J[]^{-1}J]$

$$2 \varphi_{2} = \frac{\partial^{2} \varphi}{\partial \lambda^{2}}|_{\lambda=0} = \frac{\partial}{\partial \lambda^{2}} \left[\int^{-1} [J(t,x) + \lambda \varphi^{2}(\lambda,t,x)]|_{\lambda=0} \right] = \left[\int^{-1} [4\varphi_{0}(t,x)\varphi_{1}(t,x)] \right]$$

So $\varphi_{2} = 2 \left[\int^{-1} (\left[\int^{-1} J \right]^{-1} [\left[\int^{-1} J \right]^{-1} J \right] \right]$

What is \square^{-1} ? It's easiest to introduce this for a 1D problem.

(Following Kachelriess with m=1)

Notation: $Dx \equiv \frac{d^2x}{dt^2} + \omega^2 x$ Simple equation: Dx = IFormal solution: $x = D^{-1}I$; D^{-1} is called a Green's function and written as G. Often, J is a delta-function. What does $x = D^{-1}J$ mean? $x(t) = \int dt' D^{-1}(t, t')J(t')$ It's like matrix multiplication. Kachelriess derives D^{-1} (equation 1.34) (I use D^{-1} instead of G). $D^{-1}(t, t') = \int \frac{d\Omega}{2\pi} \frac{e^{-i\Omega(t-t')}}{\Omega^2}$ First verify this is right. We want to show that $DD^{-1}I = I$. $D(D^{-1}J) = \left(\frac{d^2}{dt^2} + \omega^2\right) \int dt' \int \frac{d\Omega}{2\pi} \frac{e^{-i\Omega(t-t')}}{\omega^2 - \Omega^2} J(t') = \int dt' \int \frac{d\Omega}{2\pi} \frac{(\omega^2 - \Omega^2)e^{-i\Omega(t-t')}}{\omega^2 - \Omega^2} J(t') = \int dt' \delta(t'-t)J(t') = J(t)$ using $\frac{d^2}{dt^2}e^{-i\Omega(t-t')} = -\Omega^2 e^{-i\Omega(t-t')}$ and $\int \frac{d\Omega}{2\pi}e^{-i\Omega(t-t')} = \delta(t-t')$ Unfortunately, $D^{-1}(t, t') = \int \frac{d\Omega}{2\pi} \frac{e^{-i\Omega(t-t')}}{\omega^2 - \Omega^2}$ is NOT well-defined! The integrand diverges at $\Omega = \pm \omega$.

Resolve this by adding $\pm i\epsilon$ to the denominator, integrating with Cauchy's residue theorem and taking ϵ to 0. Still satisfies $DD^{-1}J = J$ but you get different D^{-1} (negative leads to the retarded Green's function) depending on the sign of $\pm i\epsilon$ and thus different solutions. Impose causality to pick the right sign (retarded).

Problem 1.8a

Takeaways

- Perturbation theory has lots of terms with
 ⁻¹. Turns out you can draw diagrams where J is a vertex and
 ⁻¹ is a line. (*Like Feynman diagrams*)
- Each \Box^{-1} involves an integral with a quadratic term in the denominator. (*Like Feynman propagator*)
- You need to pick which \Box^{-1} you want. Requires adding $\pm i\varepsilon$ to the denominator. Causality implies $+ i\varepsilon$.

Relativity

 $\begin{aligned} x^{\mu} &= (t, x, y, z) \\ x_{\mu} &= (t, -x, -y, -z) \end{aligned}$

Frame transformations for motion in the x-direction are

 $x'(x, y, z, t) = \gamma(v)(x + vt) \dots \text{ where } \gamma(v) = \frac{1}{\sqrt{1 - v^2}}$ $t'(x, y, z, t) = \gamma(v)(t + vx)$ y'(x, y, z, t) = yz'(x, y, z, t) = z

 $x^{\mu}x_{\mu} \equiv \sum_{\mu=0}^{\mu=3} x^{\mu}x_{\mu}$ is frame-invariant. Similarly with other 4-vectors. This can be generalized to multi-index objects.

Our senses are frame-invariant so **ultimately** the things we measure must be frame-invariant. Such variables are called **scalars.** $x^{\mu}x_{\mu}$ is a scalar.