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1 Preamble

It seems to me that Lancaster has been imprecise in his notation. He uses
the notation J and J i to refer to

� the 4 x 4 matrix representation of rotation-generators (first dimension
refers to time, so if you want to, think of it as 3 x 3 in the spacial
dimensions)

� the operators which act on functions by effectively changing their ar-
guments by an infinitesimal rotation (said differently, an operator rep-
resentation of rotation-generators where the operators act on functions
and not matrices)

Where this distinction matters is, for example, in equation (9.62). There
you see that the book shows J i is a sum of terms that look like xµ∂ν . Those
are operators acting on functions. They have the effect of changing the
arguments of the functions by infinitesimal rotations (and then when we get
to (9.64), we get to see how those operators can be exponentiated to produce
new operators that change the arguments by finite – i.e. non-infinitesimal
– amounts). On the other hand, if you look at equations (9.33) and (9.34),
the book shows J i is a 4 x 4 matrix. Those two descriptions/definitions of
J i are NOT the same! Once you get very comfortable with all of this stuff,
then you can distinguish between types of generators, based on context. But
Lancaster should, in his book, have used separate notation for the two types
of rotation generator.

Another comment before actually digging into this problem: Don’t get
hung up on the appropriate use of upper and lower indices. In Minkowski
space (but not in general relativity) the metric tensor is very simple – in fact,
it is the inverse of itself which makes life easy. All you need to do is to make
sure that both sides of an equation have the same upper and lower indices. If
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one side has different indices than the other, then those indices better come
in pairs (one upper and one lower) and that denotes a summation (otherwise
known as a contraction).

2 Stuff from exercise 9.3

For exercise 9.4, we need results from 9.3. I think that the least confusing
way of obtaining equation (9.56) is to refer back to Example 9.5 on page 84.
There we obtain Jx, Jy and Jz where

J i = −1

i

∂R(θi)

∂θi
(1)

which implies that

R(θi) ≈


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

− iθiJ i (2)

for small values of θi. Then using the expressions (9.33) and (9.34) for J i

we obtain equation (9.56). A similar kind of thing gives you equation (9.55)
and then ultimately (9.57)

3 Diving into 9.4

So now we have an expression for how a very small rotation and a very small
boost will act on a vector xµ. Namely, xµ becomes xµ+

∑
ν ω

µ
νx

ν . If you also
want to act with a small displacement, you add aµ. So

f(xµ) = f(xµ + aµ +
∑
ν

ωµνx
ν) (3)

and since both aµ and ωµν are small, we can Taylor expand to obtain the sec-
ond equation of (9.59). Then, since ωµν = −ωνµ (as can be seen from inspecting
(9.57), the term

∑
ν,µ ω

µ
νx

ν∂µf(x) becomes 1
2
[
∑

ν,µ(ωµν − ωνµ)xν∂µf(x)]. The
second term in the sum can be rewritten by changing the summation vari-
ables, namely 1

2

∑
ν,µ(−ωνµ)xν∂µf(x) = 1

2

∑
µ,ν(−ωµν )xµ∂νf(x) and we then

end up with equation (9.60).
In equation (9.61), Lancaster simply rewrites (9.60), by defining the ma-

trix Mµν to be the multiplicand of ωµν in (9.60) and noticing (see (9.11) and
(9.12)) that pµ = i∂µ.
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Next, we consider (9.62) and (9.63). This is where we could potentially
get messed up by the definitions of J and K, as discussed in the preamble.
So let’s use slightly different notation. Define

J i =
1

2

∑
jk

εijkM jk

Ki = M0i

(4)

where the ε symbol denotes as usual, the antisymmetric object whose value
is 1 when all indices appear in cyclic order and 0 when two indices are the
same. Notice that Lancaster in equation (9.62) has all upper indices but
intends repeated indices to be summed-over.

Regard my equations (4) as definitions of J and K. Now recall from
(9.50) that in general, we have a representation of Lorentz transformations
that is supposed to look like

Rep(Λ) = e−i(J
′·θ−K′·φ) (5)

I have purposely modified the equation in Lancaster (introducing notation
Rep(Λ)) to make it clear (again, see the preamble) that what is meant here, is
’the representation of Λ’, by which I mean ”how the Lorentz transformation
Λ operates, i.e. how it causes something to change”. In this expression, we
have yet to determine the forms of J ′ and K′. In the case where our operators
are acting on functions so that their space-time arguments transform under
Lorentz transformations, we get the transformed function Φ′

Φ′(x) = Φ(Λ−1x) (6)

The operator which takes Φ to Φ′ is what I call Rep(Λ).
What was derived in equation (9.61) is an expression for infinitesimal

transformations (from now on, ignore the contribution proportional to aµ

for translations). If we examine equation (9.64) and remember that we de-
rived it for infinitesimal Lorentz transformations where the argument x is
transformed by Λ rather than Λ−1, then we can see that infinitesimally, my
equation (6) has become

Φ′(x) ≈ [1− i

2

∑
µν

ωµνM
µν ]Φ(x) (7)

We see that if we expand equation (9.64) as a Taylor series where ωµν is small,
then it agrees with my equation (7). Furthermore, if we explicitly write out
the sum

∑
µν ωµνM

µν , and substitute the definitions of my equations (4),
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then we see that we end up with the form of my equation (5) but where we
set J ′ to J , and K′ to K. And that almost completes this problem.

There are a couple of loose ends. First of all, I don’t think it’s obvious that
if you prove the above equalities for infinitesimal quantities, you necessarily
have proven them for finite quantities. That takes a bit more effort. As I
recall, it’s done by showing that both sides of the equations solve the same
differential equations, not only at ’0’ but for other values as well. Also,
please observe that in Lancaster equation (9.57) the boosts are described by
vi whereas in the equation (9.50) as well as the end of exercise 9.4, there is
a term Φ. To see how to relate the velocity to Φ, look at the text between
equations (9.41) and (9.43). We have tanh(φi) = vi

c
. For small values of

the right hand side, the left hand side is approximated by φi. So, in my
equation (5), replace Φ by v

c
. Now things look a lot more like what we’d get,

using equation (9.57) for ωµν except that equation (9.57) has v instead of
v
c
. I think this is another error in Lancaster, although one that I frequently

make myself. In many treatments, the speed of light c is set to 1. Lancaster
doesn’t tend to do that. And to be honest, I don’t think he defines the term
’boost’ so maybe he means to set the rapidity to v rather than v

c
. I don’t

know. Anyway, since angles have no dimensions, one would assume that
none of the entries in (9.57) have dimensions, so whatever v is, it must be
dimensionless.
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