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Introduction 
Frequently genealogists can make reasonable inferences about certain branches of family trees, despite 

the fact that there aren’t complete or conclusive records to prove the deductions.  This is possible 

despite the missing data, because the genealogist still has enough context and general experience to 

construct a likely inference.  What I’d like to do here, is to attempt to quantify the likelihood – or 

probability – of the correctness of this kind of inference.  In particular, I will examine, based on vital 

records from the early 19th century, a certain kind of hypothesis that comes up frequently when 

attempting to establish 18th century Jewish family connections.   

 A key tool that I will use is Bayes’ theorem, in conjunction with what is known as The Rule of Total 

Probability (Freund, 1988).   

If 𝐵1, 𝐵2,…, and 𝐵𝑘 are mutually exclusive events of which one must occur, then 

 

𝑃(𝐵𝑖|𝐴) =  
𝑃( 𝐵𝑖)∙𝑃(𝐴|𝐵𝑖)  

 ∑ 𝑃(𝐵𝑗)∙𝑃(𝐴|𝐵𝑗)𝑘
𝑗=1

   (1) 

 

for I = 1, 2, … or k and where 𝑃(𝐵|𝐴) is the conditional probability of B relative to A (i.e., the 

probability of B given A). 

The general situation to be studied here, has to do with a Jewish family branch whose progenitors (C 

and/or his wife D) and some descendants are known based on vital records or other contemporaneous 

documents, but whose ancestors are only hypothesized – based on anecdotal evidence.   There is an 

Ashkenazi Jewish tradition of naming children after one’s deceased ancestors, so the names of 

descendants are correlated to the names of ancestors.  The question is whether the records of 

descendants support or reject certain hypotheses about the ancestors.  In the language of statistical 

analysis, a null hypothesis (Freund, 1988) is proposed: 

𝐻∅: “X is the ancestor (e.g. father, grandfather, etc.) of C (or D) 

with an alternative hypothesis: 

 

𝐻𝐴: “X is not the ancestor of C (or D)” 
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I will begin by setting up a fairly generic family tree with certain assumptions about naming patterns and 

about how records are randomly selected.  This generic situation can be directly applied to a number of 

situations encountered in practice.  However, there are many exceptions to the assumptions and forms 

of the family trees, and each exception needs its own separate analysis.  I will first develop the methods 

for analyzing the generic case, starting with some simple examples and then eventually deriving 

equations for the most general version of the generic case.  The next section of the paper will be to 

apply these methods – as well as exploring some of the exceptional situations mentioned above.  The 

family to be studied is from the town of Drobin in Poland, and concerns the members of the family of 

Rabbi Jonatan of Drobin born in the early 18th century.  Jonatan was a relative of the well-known Rabbi 

Jonatan Eybeschuetz and consequently a great deal of genealogical information can be extracted from 

rabbinic literature.  As part of that information, is a claim that Jonatan of Drobin was the son of Aron, 

broth of Jonatan Eybeschuetz.  However, after exploring many hundreds of vital records of Jonatan’s 

family in Drobin and other towns, I have been struck by a curious absence of the name Aron.  The 

question then is this.  How likely is it that Jonatan was the son of Aaron, given the names of Jonatan’s 

sons and grandsons?  Statistical analysis is applied.  Ultimately, this investigation turns out to show that 

even with the absence of the name Aron amongst Jonatan’s descendants, it is still statistically plausible 

that Aron was indeed the father of Jonatan.  Perhaps that will come as no surprise to anyone basing 

their assumptions on genealogies in rabbinical writings.  Even so, it is heartening to find that this 

question was able to be examined systematically to arrive at a quantitative answer. 

 

Probabilistic combinatorics as applied to family trees 

Assumptions and General Method 
The starting point of analysis is a hypothesized family tree starting with generation 0 – two parents A 

and B.  The tree goes backward in time (the ‘ancestor-generations’) starting with generation 1, the 

parents of A and B, then their parents – generation 2 – and so on.  The tree also goes forward in time 

(the ‘descendant-generations’) starting with generation (-1), the children of A and B, then their children 

– generation (-2) – and so on.  The analysis will be based on existing records and anecdotes (we’ll refer 

to these as ‘known’) which provide partial information about various members of the family tree.  The 

question we will be addressing is this: given known information about the descendant-generations, 

what is the probability of various hypothesized ancestor-generations?  This question can be converted, 

via the Bayes equation (1), into the question “what is the probability of known information about the 

descendant-generations, assuming various hypotheses about the ancestor-generations?”    

A set of general assumptions1 are proposed as the basis of analysis of this situation.  

GA1. Names of sons (generation (-1)) are given only for deceased ancestors (generations 1 and 

earlier).   

                                                           
1 Although all assumptions are stated in terms of sons, precisely the same assumptions could be made for 
daughters. 



 
 

[3] 
 

GA2. When sons are given single names, assume that names are chosen in order so that near-

generations are exhausted before the next ancestor-generation is used – but that within a 

generation, names are chosen at random. 

GA3. The number of sons follows a Poisson distribution with an expected value of N/5, where N is 

the number of child-bearing years of the couple.   Here is the basis for that assumption. First 

of all, it seems plausible that childbirth follows a Poisson distribution (Derrida, Manrubia, & 

Zanette, 1999), at least during the best part of child-bearing years (approximately 25 years).  

Secondly, it seems plausible that during that time, the average number of children is 10, 

divided equally into sons and daughters (hence 5).  In situations where parents are known to 

have had a shorter than average child-bearing period (owing to early death or late marriage 

of one of the parents), the expected value would be shorter2.    

GA4. Names, other than those of the ancestors whose names are known3, are all equally probable 

unless explicitly noted otherwise4.   

GA5. Random selection: Observations (finding civil records of confirmed sons) are a random 

selection of the sons5.  (Note that some records may be missing from city archives, owing to 

infant deaths, emigration, etc.).  More precisely, for each descendant-generation, the 

known names have been selected entirely randomly from the collection of descendants of 

that generation – irrespective of chronology.  (Note that other selection-assumptions could 

also be of interest.  For example, we might have the actual birth records of one or more of 

the descendant-generations, and therefore rather than a random selection, we would have 

a chronologically-ordered selection.  However, in what follows, the analysis will deal only 

with this random selection assumption.) 

GA6. All ancestors (generations 1 and earlier) are deceased prior to the births of any of the sons.  

(This assumption is much more restrictive than we require for the analyses that follow.)  

In practice, it suffices to limit the numbers of ancestor and descendant generations to be studied.  Most 

often in what follows, I will only go out as far as the 3rd ancestor-generation and as far as the 1st 

descendant-generation.  The general approach, based for simplicity (but it would be trivial to extend) on 

only one descendant-generation, is to start with the sons’ names (𝑆1, 𝑆2, … , 𝑆𝑛) that we have discovered 

from generation (-1). As stated in assumption GA5, we’ll assume there are other sons whose names we 

don’t know, and we’ll also assume – as stated in assumption GA5 – that we don’t have any information 

                                                           
2 This assumption, as well as others, could potentially be studied empirically by surveying the Charedi communities 
in Israel – to obtain contemporary data regarding names, birth and death-dates of children and the people after 
whom they are named. 
3 Or more generally, the names of male ancestors needn’t be known – but could, as in the case of Aron, be 
hypothesized with some probability representing the likelihood of that hypothesis. 
4 In point of fact, each town and each time-period have names that are distributed highly non-equally.   If a name is 
rare, that often turns out to provide valuable genealogical insights about families where that name turns up I 
records.   
5 These assumptions turn out to be reasonably valid when studying Polish Jewish records of generations 

born prior to 1808, but whose names appear in records later than 1808.  It will be outside the scope of 

this paper to account for situations where (as often happens) there is some partial birth-order 

information about the known sons.   In the case-study considered later, results would be fairly 

insensitive to whatever birth-order information we have.   
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about the birth order of either the known or unknown sons.   The sons 𝑆𝑖 have been selected randomly 

from the full set of sons in generation (-1), ( 𝑉1, 𝑉2, … 𝑉𝑚), where  𝑉𝑖 are ordered by birthdate so that 

 𝑖 < 𝑗 implies that 𝑉𝑖 is born before 𝑉𝑗.    We then proceed by enumerating the number of ways in which 

the ancestor-generations can be consistent with known information about the ancestors (the 

hypothesis).   For each of those ways, count the number of son-combinations that are consistent with 

the application of the naming rules GA1 – GA6.  This process gives us the total of all son-selections that 

are consistent with the ancestor-hypothesis.   This process gives us the total of all descendant-selections 

that are consistent with the ancestor-hypothesis.   Next, count the subset of above, of all of the sons’ 

name-combinations (𝑉𝑖) that include the known names (𝑆𝑖).   Divide this by the total, to obtain the pre-

selection probability.  In the final step, recalling the random selection rule GA5, we multiply the pre-

selection probability by the selection factor6 
1

(𝑚
𝑛 )

 to obtain the net probability. 

Family trees have many different patterns of known and hypothesized members, so it is challenging to 

come up with an exhaustive, yet easy-to-use, collection of combinatorial rules that can be applied. Some 

examples follow.  For simplicity of notation in this paper, I will use letters to represent individuals in the 

family tree and will also use the same letters to represent their names.  Usage will easily be determined 

by context.   

Some generic examples 

Introduction – Starting with a known set of ancestors 
As above, suppose we have obtained the names of sons (𝑆1, 𝑆2, … , 𝑆𝑛) in generation (-1) of a family tree.  

Those names have been selected as described in assumption GA5 above, from a chronologically ordered 

set of sons ( 𝑉1, 𝑉2, … 𝑉𝑚).   The ancestors from generation 1 are named 𝑋1 and 𝑋2. The ancestors from 

generation 2 are named  𝑋3, 𝑋4, 𝑋5 and 𝑋6.  For simplicity, we assume that none of the names 𝑋𝑖  are the 

same as each other.  This is all illustrated in Chart 1. 

Generic Tree 

 𝑋3 + wife 𝑋4 + wife 𝑋5 + wife 𝑋6 + wife 

𝑋1 wife of  𝑋1 𝑋2 wife of  𝑋2 

 father wife  

 

𝑉1 𝑉2 𝑉3 𝑉4 
Chart 1 

Now, for Chart 1, count how many ways the  𝑉𝑖 can be named, consistent with the ancestors in the 

chart.  

1.1. According to rules GA1 and GA2, and given assumption GA6, the first two sons (in order of 

birth) will be named after the two grandfathers of generation 1. Furthermore, also from rule 

GA3, the naming can be in either order. Therefore, we have, with equal likelihood, ( 𝑉1 = 𝑋1,

𝑉2 = 𝑋2 ) or ( 𝑉2 = 𝑋1, 𝑉1 = 𝑋2 ) (i.e. 2! permutations7) 

                                                           
6 We follow the notation  (𝑚

𝑛
) ≡

𝑚!

𝑛!(𝑚−𝑛)!
 

7 I will use factorial signs to indicate permutations, even when they aren’t necessary such as in the case of 2! 
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1.2. For each of the above two possibilities, 𝑉3 and 𝑉4 can be matched with any two 

of 𝑋3, 𝑋4, 𝑋5, 𝑋6, and in any order.    This is computed as  
4!

2!
= 12 possibilities. 

1.3. There are therefore a total of    2! ∗ ( 
4!

2!
) = 24 possible combinations of  𝑉𝑖 consistent with the 

ancestors.  Furthermore, from assumption GA5, all those combinations are equally probable.   

Next, to further illustrate the procedure, let’s assume for the generic tree of Chart 1 that we know the 

names of 2 sons (𝑆1, 𝑆2) and those are a subset of the names of the males in generation 1 and 

generation 2. In other words, we happen to have selected (but not in chronological order) sons (𝑆1, 𝑆2) 

which are some permutation of 2 of the ancestors (𝑋1, 𝑋2,, 𝑋3, 𝑋4, 𝑋5, 𝑋6).   We now count which of the 

above 24 combinations of  𝑉𝑖  are consistent with the 2 known names of the sons.  There are a number 

of interesting cases. 

 

1.4. Suppose that the 2 observed names are 𝑋1 and 𝑋2.  We follow 1.1 to see that all 24 

combinations of  𝑉𝑖 contain the names 𝑋1 and 𝑋2.  

1.5.  Suppose this time, that the two observed names are  𝑋1 and 𝑋3.  As before, we follow 1.1 to 

see that all combinations of  𝑉𝑖 contain the name 𝑋1, but only 6 of those combinations also 

contain the name 𝑋3.8   

Finally, we use the above information to compute probabilities. 

1.6. For the situation in 1.4, the pre-selection probability is obtained by dividing the 24 

combinations obtained in 1.4, by the total obtained in 1.3.  This results in a pre-selection 

probability 
24

24
= 1.  The after-selection “net” probability is then obtained by multiplying this 

result by the selection factor 
1

(4
2)

.   So finally, the probability for situation 1.4 is 𝑝1.4 =
1

6
. 

1.7. For the situation in 1.5, the pre-selection probability is obtained by dividing the 6 combinations 

obtained in 1.5, by the total obtained in 1.3.  This results in a pre-selection probability 
6

24
=  

1

4
. 

The after-selection “net” probability is then obtained by multiplying this result by the selection 

factor 
1

(4
2)

.   So finally, the probability for situation 1.4 1.5 is 𝑝1.5 =
1

24
. 

Up to this point, we have started with a specific choice of ancestors.  In general, we only know (or 

hypothesize) the names of some of those ancestors.  In such cases, there are many possible 

configurations of ancestors which are consistent with the names we know.  All of these must be 

considered, and for each of these, we also need to count the possible configurations of descendants.  

Some examples follow. 

Example 1 – Names are known of all the sons  

Example 1a – none of the great-grandfathers are known 
In this example, assume that we know (for example, through anecdotes) that there were exactly 4 sons 

in generation (-1), and furthermore that we know (from records) their names.  Furthermore, assume we 

                                                           
8 There are 4 great-grandfathers, so if   𝑋3 is selected as one of the names of sons, then that leaves 3 other options 
for the great-grandfather after which the 4th son is named.  For each of those 3 options, there are 2 possible 
configurations corresponding to the two order-permutations of  𝑌1 and  𝑌2, thus a total of (3 ∗ 2) configurations. 
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know the two grandfathers in generation 1, but we don’t know the names of any of the great-

grandfathers in generation 2.  The family tree looks like this. 

Example 1a 

 𝑋1 + wife 𝑋2 + wife 𝑋3 + wife 𝑋4 + wife 

A wife of A B wife of B 

 father wife  

 

A B 𝑌1 𝑌2 

Chart 2 

Here, we have replaced the names ( 𝑉1, 𝑉2, 𝑉3, 𝑉4) in Chart 1 with the names of the 4 known sons 

(𝑆1, 𝑆2, 𝑆3, 𝑆4).     By assumption GA3, two of those sons must be named A and B, and the other two sons 

have been given the names  𝑌1 and 𝑌2.  Again from assumption GA3, the sons A and B will appear 

chronologically before the other two sons.  Note that in Chart 2, unlike Chart 1, the row of sons is not 

intended to be representative of chronological order and we will consider all chronological orders that 

are consistent with the assumptions about the ancestors and with the rules GA1 – GA7.  

From assumption GA5, each 𝑋𝑖  is chosen with equal probability from a collection of names.  Assume that 

there is a large number, 𝑁 of possible names.  Then there are a total of  𝑁4 possible name 

combinations9 in generation 2.   From 1.1 to 1.3Error! Reference source not found. above, for each of 

those combinations, there are  2! ∗ ( 
4!

2!
) configurations of 4 sons consistent with that combination, 

hence a total of  𝑇1𝑎 = 2! ∗ (
4!

2!
) ∗  𝑁4  configurations. 

From assumption GA3, two of the 𝑋𝑖  must match the two 𝑌𝑖.  There are exactly  𝑐1𝑎 =
4!

2!
∗ 𝑁2 such 

combinations, which can be more generally computed as 

𝑐 =  ( 
𝑙!

(𝑙−𝑘)!
) ∗ 𝑁   𝑙−𝑘  (2) 

where “𝑐" is the number of combinations, “𝑙” is the number of unknowns (𝑋𝑖) in the ancestor 

generation being considered, and "𝑘" is the number of (known) 𝑌𝑖’s in descendant generation (-1), who 

are not named after the grandfathers of generation 1.  For each of the above ancestor-combinations, 

the sons A and B can appear in either order, and the sons 𝑌1 and  𝑌2 can also appear in either order, so 

there are  2! ∗ 2!  possible configurations of the 4 sons.  Hence we have altogether  𝑄1𝑎 = 2! ∗ 2! ∗
4!

2!
∗

𝑁2  possible configurations of 4 sons (in chronological order) that are consistent with the ancestors and 

known descendants hypothesized in Chart 2.   

                                                           
9 Throughout this paper, I will ignore effects of relative order 𝑜 (

1

𝑁
).  So, for example, I will not consider situations 

where one of the great-grandfathers has the name Y and another great-grandfather, who could potentially have 
any one of N names, happens to have the same name 𝑌.    Since that occurs only once out of N times, it’s net 

impact will change the overall results by a small multiple of 
𝑁−1

𝑁
. 
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Putting all this together, and then multiplying by the selection factor  
1

(4
4)

= 1,  the probability of the 

known sons being consistent with the hypothesized ancestors for Example 1a, is  

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 1𝑎) =
𝑄1𝑎

𝑇1𝑎
∗

1

(4
4)

=
 2!∗2!∗

4!

2!
∗𝑁2

2!∗( 
4!

2!
)∗ 𝑁4 

=
2

𝑁2  (3) 

Example 1b – the name of one great-grandfather is known 
We now consider a slight variation to Example 1a where one of the 4 grandfathers in generation 2, is 

hypothesized to have the name “C”.  Neither 𝑌1 nor 𝑌2 is the same name as C.  The family tree is shown 

in Chart 3. 

Example 1b 

 𝑋1 + wife 𝑋2 + wife 𝑋3 + wife C + wife 

A wife of A B wife of B 

 father wife  

 

A B 𝑌1 𝑌2 

Chart 3 

Similar to Example 1a, there are a total of  𝑁3 possible name combinations in generation 2.   There are 

 2! ∗ ( 
4!

2!
) configurations of 4 sons consistent with each combination, and therefore a total of 𝑇1𝑏 = 2 ∗

( 
4!

2!
) ∗ 𝑁3  configurations. 

From assumption GA3, two of the 𝑋𝑖  must match the two 𝑌𝑖   .  Similar to the argument of Example 1a, 

and using equation (2), there are 𝑐1𝑏 =
3!

1!
∗ 𝑁 such combinations.   For each of the above ancestor-

combinations, there are as before  2! ∗ 2!  possible configurations of the 4 sons.  This leads to 𝑄1𝑏 = 2! ∗

2! ∗
3!

1!
∗ 𝑁  possible configurations of 4 sons that are consistent with the ancestor hypothesis of Chart 2.   

Therefore, the probability of the known sons being consistent with the hypothesized ancestors for 

Example 1b, is  

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 1𝑏) =
𝑄1𝑏

𝑇1𝑏
∗

1

(4
4)

=
 2!∗2!∗ 

3!

1!
∗𝑁1

2!∗( 
4!

2!
)∗ 𝑁3 

=
1

𝑁2 (4) 

 

  

Generalizing Examples 1a and 1b 
We next consider a generalization of the previous examples, where there are 𝑆 sons (3 ≤ 𝑆 ≤ 6), all of 

whose names are known, and two of whom are named A and B.  The others are named 𝑌𝑖.  We also 

examine the situation where there are  𝐺 known great-grandfathers, where 0 ≤ 𝐺 ≤ 6 − 𝑆 (so for 

instance in Example 1b, 𝐺 = 1). The other great-grandfathers are named 𝑋𝑖. The 𝑌𝑖‘s are not the names 

of any of the known great-grandfathers.   
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There are  𝑁4−𝐺 possible great-grandfathers.  In a way similar to 1.1 to 1.3 above, we find that for each 

combination of great-grandfathers, there are 2! ∗ ( 
 4!

(6−𝑆)!
) configurations of 𝑆 sons, consistent with that 

combination, hence a total of  𝑇𝐸𝑥1 = 2! ∗ (
 4!

(6−𝑆)!
) ∗ 𝑁4−𝐺   configurations. 

The sons A and B, match the grandfathers of generation 1.   From assumption GA3, the 𝑋𝑖  must match 

the 𝑌𝑖.  Similar to the argument of Example 1a, and using equation (2), there are 𝑐1 =
(4−𝐺)!

(6−𝐺−𝑆)!
 𝑁6−𝐺−𝑆 

such combinations.   For each of the above ancestor-combinations, there are  2! ∗  (𝑆 −

2)!  “randomized” configurations of 𝑆 sons, consistent with that ancestor-combination.  This leads to 

𝑄𝐸𝑥2 = 2! ∗ (𝑆 − 2)! ∗
(4−𝐺)!

(6−𝐺−𝑆)!
 ∗ 𝑁6−𝐺−𝑆   possible configurations of S sons that are consistent with the 

known descendants and the ancestor hypothesis. 

Again multiply by the selection factor  
1

(𝑆
𝑆)

  to obtain the probability of the known sons being consistent 

with the hypothesized ancestors. 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 1) =
𝑄𝐸𝑥1

𝑇𝐸𝑥1
∗

1

(𝑆
𝑆)

=
 2!∗(𝑆−2)!∗

(4−𝐺)!

(6−𝐺−𝑆)!
∗𝑁6−𝐺−𝑆

2!∗
 4!

(6−𝑆)!
∗𝑁4−𝐺

  

=
(𝑆−2)!∗(6−𝑆)!∗(4−𝐺)!

(6−𝐺−𝑠)!∗4!
∗ 

1

𝑁𝑆−2 =  
(𝑆−2)!∗(6−𝑆

𝐺 )

(4
𝐺)

∗ 
1

𝑁𝑆−2   (5) 

 

Application of Bayes theorem 
This example is a hybrid of Example 1a and 1b.  We make the assumption that examples 1a and 1b are 

the only possible configurations of ancestors.  To be more precise, we assume that either all names in 

the second generation are unknown and of equal likelihood to one another or that one name is known 

and the others are unknown and of equal likelihood to one another.  We also need to assign a 

probability to each case:  𝑃1𝑎 ≡ 𝑝(1𝑎)and 𝑃1𝑏 ≡ 𝑝(1𝑏)  , with 𝑃1𝑎 + 𝑃1𝑏 = 1. 

What is of ultimate interest, is the probability that the hypothesized ancestors of Example 1a are 

consistent with the observed descendants of Example 1a (or alternatively we can ask the same question 

of Example 1b).  We apply the Bayes equation (1) to equations (3) and (4). 

𝑃(𝑒𝑥𝑎𝑚𝑝𝑙𝑒 1𝑎|𝑠𝑜𝑛𝑠) =
𝑃1𝑎∗𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 1𝑎)

𝑃1𝑎∗𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 1𝑎)+𝑃1𝑏∗𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 1𝑏)
  

=
𝑃1𝑎∗

2

𝑁2

𝑃1𝑎∗
2

𝑁2+𝑃1𝑏∗
1

𝑁2

 =
2𝑃1𝑎

2𝑃1𝑎 +𝑃1𝑏
  (6) 

Example 2 – Names are known of some of the sons  
Up to now, the examples have examined family trees where we know all the sons’ names (from 

generation (-1)).   However, in most real situations, there are sons whose records haven’t been found 

and whose names are therefore unknown.   
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Example 2a – Only three sons are known 
We begin by considering a minor variation of Example 1b.  As before, we assume there were 4 sons, but 

this time, we know the names only of 3 of those sons.  Said differently, we have identified a set of 3 

sons 𝑆1, 𝑆2 and 𝑆3, but we happen to know that there were 4 sons. 

Example 2a 

 𝑋1 + wife 𝑋2 + wife 𝑋3 + wife C + wife 

A wife of A B wife of B 

 father wife  

 

A B 𝑌1 𝑍1 

Chart 4 

The sons in Chart 4 are again not necessarily shown in chronological order.  As before, 𝑌1 is a son whose 

name (not C) we know (so altogether, the 3 identified sons are A, B and 𝑌1).  But this time, we don’t 

know the name of the 4th son 𝑍1.  As usual, there are  𝑁3 possible combinations of great-grandfathers.  

For each, there are   2! ∗ ( 
4!

2!
) possible combinations of 4 sons consistent with that combination, hence a 

total of  𝑇2𝑎 = 2! ∗ (
4!

2!
) ∗ 𝑁3  configurations. 

 The sons A and B, match the grandfathers of generation 1.  From assumption GA3,  𝑌1 must match one 

of the 𝑋𝑖.  There are exactly  𝑐2𝑎 = 3 ∗ 𝑁2 such combinations of great-grandfathers.  As was done in 1.1 

through 1.3  we must count the ways in which the sons can be named, consistent with the information 

we have. 

1.8. There are, as usual, (2!) ways of matching the names of the grandfathers 

1.9. The remaining two sons include the name 𝑌1.  The ‘first’ son can be named after the great-

grandfather whose name is 𝑌1.  In that case, the ‘second’ son (whose name we don’t know) 

would be named after any one of the other 3 great-grandfathers.  Alternatively, the ‘second’ 

son can be named after the great-grandfather whose name is 𝑌1 and the ‘first’ son can have 

one of the 3 other names of great-grandfathers.  So there are 
3!

1!
 ways for the remaining two 

sons to match the great-grandfathers. 

1.10. There are therefore a total of    2! ∗ ( 
3!

1!
) = 12 possible combinations of sons consistent with 

the ancestors.  Furthermore, from assumption GA5, all those combinations are equally 

probable.   

In total, putting together the number of possible combinations of ancestors, with the number of 

possible sons (consistent with the information we have) for each such combination, we get 𝑄2𝑎 = 3 ∗

2! ∗
3!

1!
∗ 𝑁2.   

Finally, the probability of the known sons being consistent with the hypothesized ancestors for Example 

2a, is obtained by multiplying  
𝑄2𝑎

𝑇2𝑎
 by the selection factor 

1

(4
3)

. 
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𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 2𝑎) =
𝑄2𝑎

𝑇2𝑎
∗

1

(4
3)

=
  3∗2!∗ 

3!

1!
∗𝑁1

2!∗( 
4!

2!
)∗𝑁3 

∗
1

4
=

3

8
∗

1

 𝑁
  (7) 

  

Generalizing Example 2a 
This further generalizes Example 1.  As before, there are 2 ancestor generations, and two known sons 

named after grandfathers.  There are 𝑆 sons (3 ≤ 𝑆 ≤ 6),  𝐾 of whose names we know (3 ≤ 𝐾 ≤ 𝑆), 

including two of whom are named A and B.  The other known sons are named 𝑌𝑖  and the unknown sons 

are named 𝑍𝑖.   We also examine the situation where there are  𝐺2 known great-grandfathers, 

where 0 ≤ 𝐺2 ≤ 6 − 𝑆.  The other great-grandfathers are named 𝑋𝑖. The 𝑌𝑖‘s are not the names of any 

of the known great-grandfathers.  Just as for Example 1, the total possible combinations of ancestors 

and S sons is 𝑇𝐸𝑥2 = 𝑇𝐸𝑥1 = 2! ∗ (
 4!

(6−𝑆)!
) ∗ 𝑁4−𝐺2. 

Similar to Example 1, there are 𝑐2 =
(4−𝐺2)!

(6−𝐺2−𝐾)!
 𝑁6−𝐺2−𝐾 possible configurations of great-grandfathers, 

consistent with the names of the sons.  For each of these, we can follow the analysis of 1.8 through 1.12 

to see that the number of possibilities are 2! ∗ (𝑆 − 2)! ∗ (6−𝐾
𝑆−𝐾

).10  Putting all this together, we have a 

total number of consistent possibilities as  𝑄𝐸𝑥2 =  2! ∗ (𝑆 − 2)! ∗ (6−𝐾
𝑆−𝐾

) ∗  
(4−𝐺2)!

(6−𝐺2−𝐾)!
 𝑁6−𝐺2−𝐾. 

Finally, we have 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 2) =
𝑄𝐸𝑥2

𝑇𝐸𝑥2
∗

1

(𝑆
𝐾)

=
2!∗(𝑆−2)!∗(6−𝐾

𝑆−𝐾)∗K!∗(S−K)!∗ 
(4−𝐺2)!

(6−𝐺2−𝐾)!
 ∗𝑁6−𝐺2−𝐾

2!∗(
 4!

(6−𝑆)!
)∗𝑆!∗𝑁4−𝐺2

   

=
(𝑆−2)!∗𝐾!

𝑆!
∗

(6−𝐾
𝐺2

)

( 4
𝐺2

)
 ∗ 𝑁2−𝐾  (8) 

 

Example 3 – Adding generation #3 
It seems intuitively obvious that if there are 6 sons or less, then generations 3 and earlier will have no 

effect on the results.  Here we want to examine the situation where there are 7 sons or more.  In 

particular, we want to see whether there are significant differences between an analysis based on 

having 8 males in generation 3 (which is the default), or based on some other number of males in 

generation 3 (which, although inaccurate, could simplify the calculations).  The situations will be 

examined in increasing order of complexity. 

 

 

                                                           
10 The factor 𝐾! ∗ (𝑆 − 𝐾)! comes from noting that the total number of ways that the known names can occur 
amongst the  𝑆! randomized names is obtained by counting number of ways the  𝐾 known (and therefore selected) 
names can be ordered, multiplied by the number of ways that the remaining names can be ordered. 
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Example 3a – all grandfathers and great-grandfathers but no other ancestors are known 
 

Example 3a 

 𝑋1 + wife 𝑋2 + wife 𝑋3 + wife  𝑋4 + wife 𝑋5 + wife 𝑋6 + wife  𝑋7 + wife 𝑋8 + wife 

C wife of C D wife of D E wife of E F wife of F 

 A  wife of A B  wife of B  

   father wife    

 

A B C D E F 𝑌1 𝑌2 

Chart 5 

We’ll begin by analyzing Chart 5, in which we assume that the first 6 sons are named after grandfathers 

and great-grandfathers.  There are a total of 𝑁8 possible name combinations in generation 3.  For each 

of those, there are  2! orderings of sons A and B, and for each of those orderings there are  4! orderings 

of sons C, D, E and F.  There are  
8!

6!
 possibilities for the remaining two sons. All of this results in  2! ∗ 4! ∗

 
8!

6!
∗ 𝑁8 possible combinations of 8 sons consistent with the ancestor assumptions.   Next, following an 

argument similar to that for Example 1a, and using equation (2), we have a total of  2! ∗ 4! ∗ 2! ∗
8!

6!
∗ 𝑁6 

combinations of ancestors and sons (chronologically ordered), consistent with what we know about the 

sons, and with what we assume about the ancestors.  The selection factor is 
1

(8
8)

= 1.  We finally arrive 

at8 

𝑃(𝑠𝑜𝑛𝑠|𝑐ℎ𝑎𝑟𝑡 5)  =
 2!∗4!∗2!∗

8!

6!
∗𝑁6

2!∗4!∗
8!

6!
 ∗𝑁8 

=
2

𝑁2 (9) 

Interestingly, this is the same result as what we obtained in equation (3).  In particular, there is no 

dependence on the number of males in generation 3, so we could considerably simplify the analysis by 

choosing, in this case, only a single male in generation 3. 

Now generalize this to  𝑆 sons, with 7 ≤ 𝑆 ≤ 14, where   𝐾 sons are known (in other words, we have 

obtained, from records, the names of 𝐾 sons).  As before, the first 6 sons are named after the 

grandfathers and great-grandfathers.  We have a total  𝑇3𝑎 = 2! ∗ 4! ∗
8!

(14−𝑆)!
∗ 𝑁8  combinations of S 

sons consistent with the ancestors.  Similarly to previous derivations, we have a total  𝑄3𝑎 = 2! ∗ 4! ∗

(𝑆 − 6)! ∗ (14−𝐾
𝑆−𝐾

) ∗
8!

(14−𝐾)!
∗ 𝑁14−𝐾 number of consistent combinations.  The selection factor is 

1

(𝑆
𝐾)

.  This 

leads to 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 3𝑎) =
𝑄3𝑎

𝑇3𝑎
∗

1

(𝑆
𝐾)

=
2!∗4!∗(𝑆−6)!∗(14−𝐾

𝑆−𝐾 )∗𝐾!∗(𝑆−𝐾)!∗ 
8!

(14−𝐾)!
 ∗𝑁14−𝐾

2!∗4!∗(
 8!

(14−𝑆)!
)∗𝑆!∗ 𝑁8

  

=
(𝑆−6)!

(𝑆−𝐾)!∗(𝑆
𝐾)

∗ 𝑁6−𝐾   (10) 

Again, this result is independent of the number of males in generation 3. 
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Generalizing example 3a 
Example 3 generalization 

 𝑋1 + wife 𝑋2 + wife 𝑋3 + wife  𝑋4 + wife 𝑋5 + wife 𝐻 + wife 𝐼 + wife  𝐽 + wife 

C wife of C D wife of D E wife of E F wife of F 

 A  wife of A B  wife of B  

   father wife    

 

A B C D E F 𝑌1 𝑍1 

Chart 6 

The son 𝑌1 is known, but does not have the same name as 𝐻, 𝐼 or 𝐽,11 and  𝑍1 is not known.  Although in 

this chart, there are only 7 known sons (including the first 6) and one unknown son, and 3 names known 

in the third generation (𝐻, 𝐼 and 𝐽), we will assume a more general case.  There are 𝑆 sons (7 ≤ 𝑆 ≤ 14), 

 𝐾 of whose names we know (7 ≤ 𝐾 ≤ 𝑆), including six of whom are named A, B, C, D, E and F.  The 

other known sons are named 𝑌𝑖  and the unknown sons are named 𝑍𝑖.   We also examine the situation 

where there are  𝐺3 known males from generation 3, where 0 ≤ 𝐺3 ≤ 14 − 𝑆.  The other great-

grandfathers are named 𝑋𝑖.   The 𝑌𝑖′s are not the names of any of the known great-great-grandfathers.    

There are a total of 𝑁8−𝐺3 possible name combinations in generation 3.  As in Example 3a, there are 2! 

orderings of sons A and B, and for each of those orderings there are 4! orderings of sons C, D, E and F.  

There are  
8!

(14−𝑆)!
 possibilities for the remaining sons.  We therefore have a total  𝑇𝐸𝑥3 =  𝑇3𝑎 = 2! ∗ 4! ∗

8!

(14−𝑆)!
∗ 𝑁8−𝐺3 combinations of S sons consistent with the ancestors. 

Next, we more or less repeat that analysis done for the generalization of Example 2a.  The first 6 sons 

are named after the 1st and 2nd generation, and there are  2! ∗ 4! possibilities for those.  There are 𝑐3 =
(8−𝐺3)!

(14−𝐺3−𝐾)!
 𝑁14−𝐺3−𝐾 possible configurations of males from the third generation, consistent with the 

names of the sons.  None of the known sons are named after generation 3.  For each of these, the 

number of possible (consistent with ancestors) combinations of sons are 2! ∗ 4! ∗ (S − 6)! ∗ (14−𝐾
𝑆−𝐾

).  

Putting all this together, we have the total number of consistent possibilities as  𝑄𝐸𝑥3 =  2! ∗ 4! ∗

(𝑆 − 6)! ∗ (14−𝐾
𝑆−𝐾

) ∗
(8−𝐺3)!

(14−𝐺3−𝐾)!
 𝑁14−𝐺3−𝐾.  The selection factor is 

1

(𝑆
𝐾)

.  

Finally, we have 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 3) =
𝑄𝐸𝑥3

𝑇𝐸𝑥3
∗

1

(𝑆
𝐾)

=
2!∗4!∗(𝑆−6)!∗(14−𝐾

𝑆−𝐾 )∗𝐾!∗(𝑆−𝐾)!∗ 
(8−𝐺3)!

(14−𝐺−𝐾)!
 ∗𝑁14−𝐺3−𝐾

2!∗4!∗(
 8!

(14−𝑆)!
)∗𝑆!∗ 𝑁8−𝐺3

   

                                                           
11 The attentive reader might notice that I skipped over the letter 𝐺2 in the list of ancestral names.  That was done 

so as not to cause confusion with the later use of the letter 𝐺2 to denote the number of known names in the 
ancestor generations 1 and beyond. 
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=   
(𝑆−6)!∗𝐾!

𝑆!
∗

(14−𝐾
𝐺3

)

( 8
𝐺3

)
∗ 𝑁6−𝐾   (11) 

We see that by introducing 𝐺3 known names in the third generation, the result of equation (8) is 

modified by a factor  𝐹 =  
(8−𝐾′

𝐺3
)

( 8
𝐺3

)
 where 𝐾′ ≡ 𝐾 − 6.  It is easy to see that when 𝐺3 and  𝐾′ are small, 

then 𝐹 ≈  (
8−𝐾′

8
)𝐺3.  In those cases, the results of equation (8) – which were independent of how many 

males there were in generation 3 – are not much altered by the knowledge of a few names from that 

generation.  

Example 4 – Some of the first sons aren’t known 
In the examples considered thus far, the unknown sons were named exclusively after ancestors from a 

single generation (either generation 2 or 3).  This has simplified the analysis but is actually quite rare in 

situations when researching Jewish civil records from the early 1800’s.     

Example 4a – Some unknown sons are named after generation 1 
Example 4a 

 𝑋1 + wife 𝑋2 + wife 𝑋3 + wife C + wife 

A wife of A B wife of B 

 father wife  

 

A 𝑍1 𝑌1 𝑍2 

Chart 7 

Chart 7 illustrates the situation of interest.  There are 2 known sons.  One is A, and is named after 

generation 1.  The other is 𝑌1, and since (by assumption) the name isn’t B, we know that 𝑌1 is named 

after generation 2 (Also, we will assume here that  𝑌1  is not the same as C.)  The names of the other two 

sons 𝑍1 and 𝑍2, are unknown.  We’ll begin by analyzing this situation, and then generalizing. 

Just as we concluded for Chart 3, there are a total of  𝑇4𝑎−1 = 2! ∗ ( 
4!

2!
) ∗ 𝑁3 configurations of 4 sons 

consistent with the ancestors.  Of these, which configurations are also consistent with the known 

information about the sons?   

1.11. The son  𝑍1 is named after grandfather B.  The sons A and 𝑍1 can be in either order, so that 

gives a factor of 2. 

1.12. One of the great-grandfathers must have the name 𝑌1.  There are  3 ∗ 𝑁2 ways this can 

happen, consistent with what we know about generation 2. 

1.13. For each such configuration of great-grandfathers,   𝑍2 is named after 1 of the 3 great-

grandfathers who aren’t named 𝑌1.  There are 3 ways for this to happen. 

1.14. The sons 𝑍2 and 𝑌1 can be in either order, so that gives another factor of 2. 

1.15. Putting these all together, we get 𝑄4𝑎−1 = 2 ∗ 2 ∗ 3 ∗ 3 ∗ 𝑁2. 

Finally, including the selection factor, we get 
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𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 4𝑎 − 1) =
𝑄4𝑎−1

𝑇4𝑎−1
∗

1

(4
2)

=
 2!∗ 2!∗2∗2∗ 3∗3∗𝑁2

2!∗( 
4!

2!
)∗4!∗ 𝑁3 

=
1

4
∗

1

 𝑁
 (12) 

Notice in the analysis above, that up to 1.13, all the calculations proceed precisely as they would if we 

had known the names of 3 sons – where instead of the name 𝑍1, we would have had the name B.   The 

only difference would have been in the selection factor where, instead of the factor  
1

(4
2)

 that we used in 

equation (12), the selection factor would have been 
1

(4
3)

.  Thus another way of deriving equation (12) is to 

refer to equation (8) to obtain 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 4𝑎 − 1) =  𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 2 [𝑆 = 4, 𝐾 = 3, 𝐺2 = 1]) ∗
 (4

3)

 (4
2)

  

=
2!∗3!

4!
∗

(3
1)

(4
1)

∗
1

𝑁
∗

2!∗2!

3!∗1!
=

1

4
∗

1

𝑁
    (13) 

Now we can generalize.  Let 𝐾1 (0 ≤ 𝐾1 ≤ 2) be the number of known sons named for grandfathers 

(males of generation 1) and 𝐾2 (0 ≤ 4) be the number of known sons named for males of generation 2.  

The total number of known sons is 𝐾 = 𝐾1 + 𝐾2. The calculation of 𝑄4𝑎 (number of combinations of 

sons consistent with the selected known sons, and the ancestor assumptions) proceeds just as for 1.11 

through 1.15.  This also follows the derivation of equation (8), where we substitute in equation (8) the 

value  2 + 𝐾2 instead of 𝐾.  The only difference in calculating the probability, is in the selection factor, 

just as explained in the derivation of equation (13).  The result of all this is 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 4𝑎) =  
( 𝑆

𝐾2+2)

(𝑆
𝐾)

∗
(𝑆−2)!∗(𝐾2+2)!

𝑆!
∗

(
4−𝐾2

𝐺2
)

( 4
𝐺2

)
 ∗ 𝑁−𝐾2   

=  
𝐾!∗(𝑆−𝐾)!∗(𝑆−2)!

(𝑆−(𝐾2+2))!∗𝑆!
∗

(
4−𝐾2

𝐺2
)

( 4
𝐺2

)
 ∗ 𝑁−𝐾2    (14) 

 

Example 4b – Some unknown sons are named after generation 1 and generation 2 
 

Example 4b 

 𝑋1 + wife 𝑋2 + wife 𝑋3 + wife  𝑋4 + wife 𝑋5 + wife 𝐻 + wife 𝐼 + wife  𝐽 + wife 

C wife of C D wife of D E wife of E F wife of F 

 A  wife of A B  wife of B  

   father wife    

 

A B C D 𝑍1 𝑍2 𝑌1 𝑍3 

Chart 8 

Chart 8 is an example of this situation, although we’ve chosen a case where there aren’t any unknown 

sons named after generation 1.  There are 5 known sons A, B, C, D and 𝑌1. A and B and are named after 

generation 1.  C and D are named after generation 2.  The last one 𝑌1, is named after generation 3 (i.e., it 

is not E or F) and is assumed to not be the same as H, I or J.  The names of the other 3 sons  𝑍1, 𝑍2 and 
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 𝑍3 are unknown. The analysis is similar to that for Example 4a, so we will skip some of those steps.  

Begin by noticing that 𝑍1 and 𝑍2 are named after great-grandfathers E and F.  The sons C, D,  𝑍1 and 𝑍2 

can be in any order, so that gives a factor of 4!. The remainder of the analysis, other than for selection 

factors, is exactly the same as for equation (11) but where we treat 𝑍1 and 𝑍2  as though they were 

knowns.  For Chart 8, the selection factor is 
1

(8
5)

.  On the other hand, for equation (11) – treating  𝑍1 

and 𝑍2  as though they were knowns – the selection factor is 
1

(8
7)

.  So, substituting the values  𝐾 = 7, 𝑆 =

8, 𝐺3 = 3 into equation (11), and then multiplying by the ratio of selection factors, we obtain  

𝑃(𝑠𝑜𝑛𝑠| Chart 8) =
(8

7)

(8
5)

∗
2!∗7!

8!
∗

(7
3)

(8
3)

 =
5

224
∗ 𝑁−1  (15) 

The general case is derived in a way very similar to equation (14).  We use the same notation as in that 

equation, but we also introduce  𝐾3 (0 ≤ 𝐾3 ≤ 8), which is the number of known sons named for males 

of generation 3.  The total number of sons is 𝐾 = 𝐾1 + 𝐾2 + 𝐾3. 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 4𝑏) =
( 𝑆

𝐾3+6)

(𝑆
𝐾)

∗
(𝑆−6)!∗(𝐾3+6)!

𝑆!
∗

(
8−𝐾3

𝐺3
)

( 8
𝐺3

)
∗ 𝑁−𝐾3   

=  
𝐾!∗(𝑆−𝐾)!∗(𝑆−6)!

(𝑆−(𝐾3+6))!∗𝑆!
∗

(
8−𝐾3

𝐺3
)

( 8
𝐺3

)
∗ 𝑁−𝐾3    (16) 

 

Note that this result also holds if there are unknown sons named after generation 1.   Only the selection 

process has any effect on the overall probability and the factors of equation (16) already account for 

that. 

Example 5 – Some unknowns in each ancestral generation, but known sons aren’t named 

after known ancestors 
Often, we know the name of only one grandfather, and sometimes we don’t know the names of any 

grandfathers.  More generally, we may have unknown ancestors in more than one generation. 

Example 5a – Some grandfathers and great-grandfathers aren’t known 
Example 5a 

 𝑋2 + wife 𝑋3 + wife 𝑋4 + wife C + wife 

A wife of A 𝑋1 wife of 𝑋1 

 father wife  

 

𝑍1 𝑍2 𝑌1 𝑌2 
Chart 9 

In Chart 9, one grandfather isn’t known.  We assume that there are exactly 4 sons, but we know the 

names of only 2 of those sons.  None of the known sons are named after known ancestors. (Note that 

this assumption differs from assumptions made in previous examples, where some of the known sons 
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had the same names as known grandfathers.)  The row of sons shown in Chart 9 is not necessarily in 

chronological order.  

As usual, there are a total of  𝑇5𝑎−1 = 2! ∗ ( 
4!

2!
) ∗ 𝑁4 configurations of 4 sons consistent with the 

ancestors. The following steps are taken to determine which of those configurations are also consistent 

with the known information about the sons. 

1.16. Two of the 𝑋𝑖  must have the names  𝑌1 and 𝑌2.  There are 2 distinct types of ways in which 

this can happen. 

1.16.1. Both of those 𝑋𝑖 (i.e. 𝑌1 and 𝑌2) are from generation 2.  There are  2! ∗ (3
2
) ∗ 𝑁2 ways for 

that to happen.   

1.16.2. One of the 𝑋𝑖, for example 𝑌1, is from generation 1, and the other is from generation 2. 

There are 2 choices (𝑌1 or 𝑌2)  for 𝑋1, and for each of those, there are 3 possible 𝑋𝑖’s 

from generation 2, which can be matched to the other 𝑌𝑖.  So altogether, there are  2 ∗

(3
1
) ∗ 𝑁2 such combinations of grandfathers. 

1.17. The analysis of sons is different for each of 1.16.1 and 1.16.2.   

1.17.1. (For 1.16.1) The first 2 sons (chronologically) are named after the grandfathers, and since 

the known sons are named after the great-grandfathers, then the two unknown sons 

must be the ones named after the grandfathers.  This can happen in either order, hence 

a factor of 2!.  For each order, the sons 𝑌1 and 𝑌2 can appear in either order hence 

another factor of 2! and therefore a total of 2! ∗ 2! combinations of sons consistent with 

each configuration of 1.16.1. 

1.17.2. (For 1.16.2) Again, the first 2 sons (chronologically) are named after the grandfathers, so 

again there is a factor of  2! because the sons can be named in either order.  However, 

one of those sons is known (for example 𝑌1)12, so that leaves one unknown son to be 

named after generation 2.  Since there is already a son (in this example, 𝑌2) named after 

one of the great-grandfathers then that leaves 3 possibilities for the name of the 

unknown son that is named after generation 2.  For each of those possibilities, there 

are 2! ways of ordering the two sons named after generation 2.  Putting all this together, 

there are a total of  3 ∗ 2! ∗ 2!  combinations of sons consistent with each configuration 

of 1.16.2. 

1.18. Now add up the results of 1.16 and 1.17.  For the case considered in 1.16.1, the total number 

of consistent combinations are 2! ∗ (3
2
) ∗ 2 ∗ 2! ∗ 𝑁2.  For the case considered in 1.16.2, the 

total number of consistent combinations are 2 ∗ (3
1
) ∗ 3 ∗ 2! ∗ 2! ∗ 𝑁2.  The total is 𝑄5𝑎−1 =

2 ∗ 2! ∗ 2! ∗ 12 ∗ 𝑁2. 

Finally, including the selection factor, we get 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 5𝑎 − 1) =
𝑄5𝑎−1

𝑇5𝑎−1
∗

1

(4
2)

=
 2!∗2!∗2!∗ 2!∗2∗12∗𝑁2

2!∗( 
4!

2!
)∗ 4!∗𝑁4 

=
2

3
∗

1

 𝑁2 (17) 

                                                           
12 This derivation might be clearer if we separately considered each of the two ways, in 1.16.2, of naming the 
unknown grandfather (either 𝑌1 or 𝑌2).  Then, instead of representing those two choices in 1.16.2 by a factor of 2, 
consider each choice independently in 1.17.2 – which would effectively lead to an extra factor of 2 in 1.17.2.  The 
net result is, of course, the same. 
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We now generalize.  First we define  𝐺1 to be the number of known grandfathers and as before,  𝐺2 to 

be the number of known great-grandfathers. We define 𝐺 to be the number of known ancestors 

(beyond generation 0) and in this example, we have 𝐺 =  𝐺1 + 𝐺2.  Note that the following inequalities 

must hold:  𝐾1 ≤ 2 − 𝐺1 and 𝐾2 ≤ 2 − 𝐺2.  We will be able to enforce these inequalities in general 

equations, by setting terms to 0 if they violate those inequalities.  It will turn out to be useful to 

introduce the notation 

(𝑚
𝑛

) ≡ {
(𝑚

𝑛
), 𝑛 ≤ 𝑚

0, 𝑛 > 𝑚 or 𝑛 < 0
  (18) 

There are, as usual, a total of  𝑇5𝑎 = 2! ∗ ( 
4!

(6−𝑆)!
) ∗ 𝑁6−𝐺 configurations of 𝑆 sons (𝑆 ≤ 6) consistent 

with the ancestors. Next, we enumerate, as in 1.16, the different ways in which ancestors can be named 

consistent with the known sons, and for each of those ways we find how many combinations of sons are 

consistent with the known sons. 

1.19. There are 𝐾 known sons (and as before, we’ll assume that none of them are named after 

known ancestors).  We’ll examine the situation where  𝐾1 is the number of males in 

generation 1 who have the same names as known sons, and 𝐾2 is the number of males in 

generation 2 to have the same names as known sons.  𝐾 = 𝐾1 + 𝐾2.  For each choice of  𝐾1 

names from the  𝐾 known sons, there are  (2−𝐺1
𝐾1

) ∗ 𝐾1! ways of assigning those names to the 

males of generation 1.  Also, there are  (4−𝐺2
 𝐾2

) ∗ 𝐾2!  ways of assigning the remaining 𝐾2 =

𝐾 − 𝐾1 names to the males of generation 2.   These two numbers are multiplied together.  

Then this number is multiplied by the number of ways ( 𝐾
𝐾1

) in which 𝐾1 names can be chosen 

from 𝐾 names.  Altogether, for 𝐾1 names in generation 1, there are  (2−𝐺1
𝐾1

) ∗ 𝐾1! ∗  (4−𝐺2
 𝐾2

) ∗

𝐾2! ∗ ( 𝐾
𝐾1

) assignments of known names to males of generations 1 and 2.  There are 

 𝑁6−𝐾−𝐺1−𝐺2 possible unknown (i.e. unassigned, nor previously identified) ancestors.   

1.20.  What combinations of sons are consistent with a specific configuration of  (𝐾1, 𝐾2)?  Since 

there are 𝐾1 known sons named after generation 1, there must be 2 − 𝐾1 unknown sons 

named after that generation.  There are two orderings of the first 2 sons, so that is a factor 

of 2!.  There are 𝑆 − 𝐾2 − 2 remaining unknown sons which are chosen from the (4 −

𝐾2) known ancestors of generation 2.  The choice factor is ( 4−𝐾2
𝑆−𝐾2−2

).  This must be multiplied 

by a permutation factor of (𝑆 − 2)!.  Altogether, the number of combinations of sons 

consistent with (𝐾1, 𝐾2) are 𝑞𝐾1,𝐾2
= 2! ∗ ( 4−𝐾2

𝑆−𝐾2−2
) ∗ (𝑆 − 2)!. 

Now we can sum up the results from 1.19 and 1.20 to obtain   

𝑄5𝑎 = ∑ (2−𝐺1
𝐾1

) ∗ 𝐾1! ∗   (4−𝐺2
 𝐾2

) ∗ 𝐾2! ∗ ( 𝐾
𝐾1

)
2−𝐺1
𝐾1=0 ∗ 2! ∗ ( 4−𝐾2

𝑆−𝐾2−2
) ∗ (𝑆 − 2)! ∗ 𝑁6−𝐾−𝐺1−𝐺2)  

= 2! ∗ (𝑆 − 2)! ∗ 𝐾! ∗ 𝑁6−𝐾−𝐺1−𝐺2 ∗ ∑ ( (2−𝐺1
𝐾1

) ∗  (4−𝐺2
 𝐾2

) ∗ ( 4−𝐾2
𝑆−𝐾2−2

))
2−𝐺1
𝐾1=0   (19) 

 



 
 

[18] 
 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 5𝑎) =
𝑄5𝑎

𝑇5𝑎
∗

1

(𝑆
𝐾)

=
2!∗(𝑆−2)!∗𝐾!∗𝑁6−𝐾−𝐺1−𝐺2∗∑ ( (2−𝐺1

𝐾1
)∗ (

4−𝐺2
 𝐾2

)∗(
4−𝐾+𝐾1
𝑆−𝐾2−2

))
2−𝐺1
𝐾1=0

2!∗(𝑆
𝐾)∗( 

4!

(6−𝑆)!
)∗𝑁6−𝐺

  

=
𝐾!∗∑ ( (2−𝐺1

𝐾1
)∗ (

4−𝐺2
 𝐾−𝐾1

)∗(
4−𝐾+𝐾1

6−𝑆
))

2−𝐺1
𝐾1=0  

(𝑆
𝐾)∗ ( 4

𝑆−2)
∗ 𝑁−𝐾  (20) 

 

Example 5b – Some unknowns in each of generations 1, 2 and 3 
 

 

 

Example 5b 

 𝑋4 + wife 𝑋5 + wife 𝑋6 + wife  𝑋7 + wife 𝑋8 + wife 𝐻 + wife 𝐼 + wife  𝐽 + wife 

C wife of C D wife of D 𝑋2 wife of 𝑋2 𝑋3 wife of 𝑋3 

 A  wife of A 𝑋1  wife of 𝑋1  

   father wife    

 

𝑍1 𝑍2 𝑍3 𝑍4 𝑌1 𝑌2 𝑌3 𝑌4 
Chart 10 

In Chart 10, one grandfather isn’t known, two great-grandfathers aren’t known and five great-great-

grandfathers aren’t known.  We assume that there are exactly 8 sons, but we know the names of only 4 

of those sons.  As in Example 5a, none of the known sons are named after known ancestors.  The row of 

sons shown in Chart 10 is not necessarily in chronological order. 

As deduced several times previously, there are a total of  𝑇5𝑏−1 = 2! ∗ 4! ∗ (
8!

(14−8)!
) ∗ 𝑁8 configurations 

of 8 sons consistent with the ancestors.  Now list those configuration that are consistent with the 

knowledge about the sons. 

1.21. Four of the 𝑋𝑖  must have the names  𝑌1,  𝑌2, 𝑌3 and 𝑌4.  There are several distinct ways in 

which this can happen. 

1.21.1. All of the  𝑋𝑖  (i.e., 𝑌1,  𝑌2, 𝑌3 and 𝑌4) are from generation 3.  There are  4! ∗ (5
4
) ∗ 𝑁4 ways 

for that to happen. 

1.21.2. Three  𝑋𝑖  are from generation 3 and the remaining one is from generation 2.  There are 

4 ways of selecting the name of the remaining son from the original 4 𝑌𝑖. There are  3! ∗

(5
3
) ways of choosing (with order)  𝑋𝑖  from generation 3, and for each of those there are 

 1! ∗ (2
1
) ways of choosing the remaining  𝑋𝑖  from generation 2.  Thus a total of 4 ∗ 3! ∗

(5
3
) ∗ 1! ∗ (2

1
) ∗ 𝑁4. 

1.21.3. Three 𝑋𝑖  are from generation 3 and the remaining one is from generation 1.  There are 4 

ways of selecting the name of the remaining son from the original 4 𝑌𝑖. There are  3! ∗ (5
3
) 

ways of choosing (with order)  𝑋𝑖  from generation 3, and for each of those there are  1! ∗
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(1
1
) ways of choosing the remaining  𝑋𝑖  from generation 1.  Thus a total of 4 ∗ 3! ∗ (5

3
) ∗

1! ∗ (1
1
) ∗ 𝑁4. 

1.21.4. Two  𝑋𝑖  are from generation 3 and the remaining two are from generation 2.  There 

are (4
2
) ways of selecting which 2 of the 4 𝑋𝑖  are in generation 3 (and the remaining ones 

are in generation 2).  There are  2! ∗ (5
2
) ways of choosing (with order)  𝑋𝑖  from generation 

3, and for each of those there are  2! ∗ (2
2
) ways of choosing the remaining  𝑋𝑖  from 

generation 2. Thus a total of  (4
2
) ∗ 2! ∗ (5

2
) ∗ 2! ∗ (2

2
) ∗ 𝑁4. 

1.21.5. Two  𝑋𝑖  are from generation 3, one of the remaining ones is from generation 2, and the 

last one is from generation 1.  There are (4
2
) ways of selecting which of the 2 𝑋𝑖  are from 

generation 3.  There are  2! ∗ (5
2
) ways of choosing (with order)  𝑋𝑖  from generation 3.  The 

third 𝑋𝑖  could be in generation 2 or in generation 1, and the fourth one is in generation 1 

or 2 respectively.  So there are (2
1
)  ways of choosing which of the remaining  𝑋𝑖  are in 

generation 2.  For the one in generation 2, there are 1! ∗ (2
1
) ways of choosing it, and for 

the one in generation 1, there are  1! ∗ (1
1
) way of choosing it.  Thus a total of (4

2
) ∗ 2! ∗

(5
2
) ∗  (2

1
) ∗ 1! ∗ (2

1
) ∗ 1! ∗ (𝑁4). 

1.21.6. One  𝑋𝑖  is from generation 3, two of the remaining ones are from generation 2, and the 

last one is from generation 1. There are (4
1
) ways of selecting which  𝑋𝑖  is from generation 

3.  There are 1! ∗ (5
1
) ways of choosing 𝑋𝑖  from generation 3.  There are (3

2
) ways of 

selecting the two remaining 𝑋𝑖′𝑠 that will be assigned to generation 2 (and therefore of 

selecting the 4th 𝑋𝑖 which is assigned to generation 1).  For those assigned to generation 2, 

there are 2! ∗ (2
2
) choices, and for the one in generation 1, there is  1! ∗ (1

1
) choice.  Thus a 

total of (4
1
) ∗ 1! ∗ (5

1
) ∗ (3

2
) ∗ 2! ∗ (2

2
) ∗ 1! ∗ (1

1
) ∗ 𝑁4.    

1.22. The analysis of sons is different for each of 1.21.1 through 1.21.6.   

1.22.1. Since there are 6 male ancestors amongst generations 1 and 2, and there are only 4 𝑍𝑖’s, 

then at least 2 𝑌𝑖’s must be named after ancestors in generations 1 and 2 (from 

assumption GA2). This therefore excludes options 1.21.1, 1.21.2 and 1.21.3. 

1.22.2. (For 1.21.4) The first two sons (chronologically) are named after generation 1.  Since the 

known sons are named after generations 2 and 3, then the first two sons are unknowns 

and they can be named in either order for the grandfathers – hence a factor of 2!  Two 

known sons are named after the great-grandfathers 𝑌𝑖 and 𝑌𝑗, and the remaining two 

unknown sons are named after the great-grandfathers C and D.  There is a factor of 4!  

orderings.  The remaining two known sons are named after the third generation males 𝑌𝑙  

and 𝑌𝑘. (Recall that the four names (𝑌𝑖, 𝑌𝑗 , 𝑌𝑙 , 𝑌𝑘) are a permutation of (𝑌1, 𝑌2, 𝑌3, 𝑌4).) This 

can happen in either order so a final factor of 2!.  There are therefore a total of 2! ∗ 4! ∗ 2! 

possible combinations of sons, consistent with each configuration of 1.21.4. 

1.22.3. (For 1.21.5)  One of the known sons is named after generation 1, so one of the unknown 

sons must be named after the other grandfather in generation 1.  This can happen in 

either order hence a factor of 2!.    Another known son is named after generation 2, as are 

the remaining 3 unknown sons.  There is a factor of 4! orderings.  As in 1.22.2, the 

remaining two sons can appear in one of 2! ways.  There are therefore a total of 2! ∗ 4! ∗

2! possible combinations of sons, consistent with each configuration of 1.21.5.  
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1.22.4. (For 1.21.6)  One of the known sons is named after generation 1, so one of the unknown 

sons must be named after the other grandfather in generation 1.  This can happen in 

either order hence a factor of 2!.    Two known sons are named after generation 2, as are 2 

of the remaining 3 unknown sons.  There is a factor of 4! orderings.  The last (4th) known 

son is named after generation 3, so the last (4th) unknown son is named after one of the 

remaining 7 males of generation 3.  The 4th known and unknown sons can be named in 

either order, so there are (8−1
2−1

) ∗ 2! = 14 possibilities for those.  There are altogether a 

total of 2! ∗ 4! ∗ 14 possible combinations of sons, consistent with each configuration of 

1.21.6. 

1.23. Now add up the results of 1.21 and 1.22. For the cases considered in 1.21.1 through 1.21.3, 

the contributions add up to 0 as explained in 1.22.1.  For the case considered in 1.21.4 and 

1.22.2, the total number of consistent combinations are (4
2
) ∗ 2! ∗ (5

2
) ∗ 2! ∗ (2

2
) ∗ 2! ∗ 4! ∗ 2! ∗

𝑁4.  For the case considered in 1.21.5 and 1.22.3, the total number of consistent 

combinations are (4
2
) ∗ 2! ∗ (5

2
) ∗  (2

1
) ∗ 1! ∗ (2

1
) ∗ 1! ∗ 2! ∗ 4! ∗ 2! ∗  (1

1
) ∗ 𝑁4.  For the case 

considered in 1.21.6 and 1.22.4, the total number of consistent combinations are (4
1
) ∗ 1! ∗

(5
1
) ∗ (3

2
) ∗ 2! ∗ (2

2
) ∗ 1! ∗ (1

1
) ∗ 2! ∗ 4! ∗ 14 ∗ 𝑁4.  The total is  𝑄5𝑏−1 = 4! ∗ 4 ∗ 10 ∗

(4 + 8 + 21) ∗ 𝑁4. 

Finally, including the selection factor, we get 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 5𝑏 − 1) =
𝑄5𝑏−1

𝑇5𝑏−1
∗

1

(8
4)

=
4!∗4!∗4!∗6!∗4∗10∗(4+8+21)∗𝑁4

2!∗4!∗8!∗8!∗𝑁8 =
39

49
∗  

1

𝑁4   (21) 

We now generalize the case where there are more than 6 sons (6 ≤ 𝑆 ≤ 14), as we did for example 5a.  

We use notation developed in that example.   The total number of known ancestors is 𝐺 =  𝐺1 + 𝐺2 +

𝐺3.  There are a total of  𝑇5𝑏 = 2! ∗ 4! ∗
8!

(14−𝑆)!
∗ 𝑁14−𝐺 configurations of 𝑆 sons (𝑆 ≤ 14) consistent 

with the ancestors.  Next, we enumerate, as in 1.21, the different ways in which ancestors can be named 

consistent with the known sons, and for each of those ways we find how many combinations of sons are 

consistent with the known sons. 

1.24. There are 𝐾 known sons (none named after known ancestors).  We’ll examine the situation 

where  𝐾1 is the number of males in generation 1 who have the same names as known sons, 

 𝐾2 is the number of males in generation 2 to have the same names as known sons, and 𝐾3 is 

the number of males in generation 3 to have the same names as known sons   𝐾 = 𝐾1 + 𝐾2 +

𝐾3.  For each choice of  𝐾1 names from the  𝐾 known sons, there are   (2−𝐺1
𝐾1

) ∗ 𝐾1! ways of 

assigning those names to the males of generation 1.  Also, there are   (4−𝐺2
 𝐾2

) ∗ 𝐾2!  ways of 

assigning 𝐾2 names to the males of generation 2.  Finally, there are (8−𝐺3
 𝐾3

) ∗ 𝐾3! ways of 

assigning the remaining 𝐾3 = 𝐾 − 𝐾1 − 𝐾2 names to the males of generation 3.   These three 

numbers are multiplied together.   Then this number is multiplied by the number of ways 

 ( 𝐾
𝐾1

) in which 𝐾1 names can be chosen from 𝐾 names, and is further multiplied by the 

number of ways(𝐾−𝐾1
𝐾2

) in which  𝐾2 names can be chosen from the 𝐾 − 𝐾1 names remaining 

after selecting 𝐾1 names. (The last 𝐾3 names are then completely determined.)  Altogether, 
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for  𝐾1 names in generation 1, and  𝐾2 names in generation 2, there are (2−𝐺1
𝐾1

) ∗ 𝐾1! ∗

  (4−𝐺2
 𝐾2

) ∗ 𝐾2! ∗  (8−𝐺3
 𝐾3

) ∗ 𝐾3! ∗ ( 𝐾
𝐾1

)*(𝐾−𝐾1
𝐾2

) =  (2−𝐺1
𝐾1

) ∗ (4−𝐺2
 𝐾2

) ∗ ( 8−𝐺3
 𝐾−𝐾1−𝐾2

) ∗ 𝐾! 

assignments of known names to males of generations 1, 2 and 3.  There are 𝑁14−𝐾−𝐺 possible 

unknown ancestors. 

1.25. What combinations of sons are consistent with a specific configuration of (𝐾1, 𝐾2, 𝐾3)?  Since 

there are 𝐾1 known sons named after generation 1, there must be 2 − 𝐾1 unknown sons 

named after that generation.  There are two orderings of the first 2 sons, so that is a factor 

of 2!.  Similarly, there are 4 − 𝐾2 unknown sons named after generation 2, with 4! orderings.   

There are 𝑆 − 𝐾3 − 6 remaining unknown sons which are chosen from the (8 − 𝐾3) known 

ancestors of generation 3.  The choice factor is  ( 8−𝐾3
𝑆−𝐾3−6

).  This must be multiplied by a 

permutation factor of (𝑆 − 6)!.  Altogether, the number of combinations of sons consistent 

with (𝐾1, 𝐾2, 𝐾3) are 𝑞𝐾1,𝐾2,𝐾3
= 2! ∗ 4! ∗  ( 8−𝐾3

𝑆−𝐾3−6
) ∗ (𝑆 − 6)!.   

Now we can sum up the results from 1.24 and 1.25 to obtain 

𝑄5𝑏 = ∑  
2−𝐺1
𝐾1=0 ∑ ((2−𝐺1

𝐾1
) ∗ (4−𝐺2

 𝐾2
) ∗ ( 8−𝐺3

 𝐾−𝐾1−𝐾2
) ∗ 𝐾!  ∗ 

4−𝐺2
𝐾2=0 2! ∗ 4! ∗ ( 8−𝐾3

𝑆−𝐾3−6
) ∗ (𝑆 − 6)! ∗

𝑁14−𝐾−𝐺)          

=  2! ∗ 4! ∗ (𝑆 − 6)! ∗ 𝐾! ∗ 𝑁14−𝐾−𝐺 ∗ ∑  
2−𝐺1
𝐾1=0 ∑ ((2−𝐺1

𝐾1
) ∗  (4−𝐺2

 𝐾2
) ∗  ( 8−𝐺3

 𝐾−𝐾1−𝐾2
) ∗ ( 8−𝐾3

𝑆−𝐾3−6
))   

4−𝐺2
𝐾2=0     

(22) 

  

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 5𝑏) =
𝑄5𝑏

𝑇5𝑏
∗

1

(𝑆
𝐾)

=

2!∗4!∗(𝑆−6)!∗𝐾!∗𝑁14−𝐾−𝐺∗∑  ∑ ((2−𝐺1
𝐾1

)∗ (
4−𝐺2

 𝐾2
)∗ (

8−𝐺3
 𝐾−𝐾1−𝐾2

)∗(
8−𝐾+𝐾1+𝐾2

𝑆−𝐾3−6
))   

4−𝐺2
𝐾2=0

2−𝐺1
𝐾1=0

(𝑆
𝐾)∗2!∗4!∗

8!

(14−𝑆)!
∗𝑁14−𝐺  

  

=
𝐾!∗∑  ∑ ((2−𝐺1

𝐾1
)∗ (

4−𝐺2
 𝐾2

)∗ (
8−𝐺3

 𝐾−𝐾1−𝐾2
)∗(

8−𝐾+𝐾1+𝐾2
14−𝑆

))  
4−𝐺2
𝐾2=0

2−𝐺1
𝐾1=0  

(𝑆
𝐾)∗( 8

𝑆−6)
∗ 𝑁−𝐾  (23) 

 

Example 6 – Some unknowns in each ancestral generation, with some known sons named 

after known ancestors 
We now consider the situation where we have found records for some of the sons, and their names 

might include names of ancestors that we know about.  The analysis is very similar to that of the 

previous set of examples, but we will begin as usual with a concrete example and then proceed to the 

general case. 

Example 6a 

 𝑋2 + wife 𝑋3 + wife 𝑋4 + wife C + wife 

A wife of A 𝑋1 wife of 𝑋1 



 
 

[22] 
 

 father wife  

 

𝑍1 𝑍2 𝑌1 𝑌2 C 

Chart 11 

 Chart 11 is like Chart 9 except there is one extra son whose name is C – the name of one of his great-

grandfathers.   We will proceed by noting the differences with the analysis of Chart 9.  Since there are 3 

sons named after generation 2, there are a total of 𝑇6𝑎−1 = 2! ∗ (
4!

1!
) ∗ 𝑁4 configurations of 5 sons 

consistent with the ancestors.  Next, we enumerate the different ways in which ancestors can be named 

consistent with the known sons.  This enumeration is identical to what we obtain in 1.16, since that 

analysis depends only on the number of known sons who are not named after any known ancestor.  For 

each case in 1.16, we analyze the ways in which sons can be named.   

1.26.1. (For ancestors named similarly to 1.16.1) The first 2 sons (chronologically) are named 

after the grandfathers, and since the known sons are named after the great-

grandfathers, then the two unknown sons must be the ones named after the 

grandfathers.  This can happen in either order, hence a factor of 2!.  For each order, the 

sons 𝑌1, 𝑌2 and C can appear in either order hence another factor of 3! and therefore a 

total of 2! ∗ 3! combinations of sons consistent with each configuration of the type in 

1.16.1. 

1.26.2. (For ancestors named similarly to 1.16.2) Again, the first 2 sons (chronologically) are 

named after the grandfathers, so again there is a factor of  2! because the sons can be 

named in either order.  However, one of those sons is known (for example 𝑌1)13, so that 

leaves one unknown son to be named after generation 2.  Since there are already 2 sons 

(in this example, 𝑌2 and C) named after 2 of the great-grandfathers then that leaves 2 

possibilities for the name of the unknown son that is named after generation 2.  For each 

of those possibilities, there are 3! ways of ordering the 3 sons named after generation 2.  

Putting all this together, there are a total of  3! ∗ 2 ∗ 2!  combinations of sons consistent 

with each configuration of the type in 1.16.2. 

Now add up the results of 1.16, 1.26.1 and 1.26.2.  The total is 𝑄6𝑎−1 = 2! ∗ (3
2
) ∗ 2! ∗ 3! ∗ 𝑁2 + 2 ∗

(3
1
) ∗ 3! ∗ 2 ∗ 2! ∗ 𝑁2.  Rather than continuing onwards to compute the probability, let’s notice some 

patterns.  First, define 𝑆𝑖 to be the number of sons named after known ancestors in generation 𝑖.  In 

computing the total 𝑇6𝑎−1, we used the general formula  𝑇2(𝐾, 𝑆, 𝐺1, 𝐺2, 𝑆1, 𝑆2) = 𝑇5𝑎 = 2! ∗ ( 
4!

(6−𝑆)!
) ∗

𝑁6−𝐺.  Next, in enumerating the various ways of naming ancestors, we used the same analysis as for 

1.16, where the values of 𝐾𝑖 and 𝐾, which refer to the known sons, are replaced respectively by  𝐾𝑖 − 𝑆𝑖 

and 𝐾 − 𝑆1 − 𝑆2. Finally, in calculating the number of ways in which sons could be named after each 

ancestral configuration, we follow the analysis of 1.17 by where the values of 𝐾𝑖 are those used for the 

ancestral configuration.  Apply this to the results obtained in 1.19 and 1.20 as follows.  From 1.19, 

                                                           
13 This derivation might be clearer if we separately considered each of the two ways, in 1.16.2, of naming the 
unknown grandfather (either 𝑌1 or 𝑌2).  Then, instead of representing those two choices in 1.16.2 by a factor of 2, 
consider each choice independently in 1.17.2 – which would effectively lead to an extra factor of 2 in 1.17.2.  The 
net result is, of course, the same. 
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with (𝐾1, 𝐾2) known names, there are   ( 2−𝐺1
𝐾1−𝑆1

) ∗ (𝐾1 − 𝑆1)! ∗   ( 4−𝐺2
 𝐾2−𝑆2

) ∗ (𝐾2 − 𝑆2)! ∗ (𝐾−𝑆1−𝑆2
𝐾1−𝑆1

) 

assignments of known names to males of generations 1 and 2.  There are  𝑁6−𝐾+𝑆1+𝑆2−𝐺1−𝐺2 possible 

unknown (i.e. unassigned, nor previously identified) ancestors.  From 1.20, 𝑞𝐾1,𝐾2
= 2! ∗  ( 4−𝐾2

𝑆−𝐾2−2
) ∗

(𝑆 − 2)! where we define  𝑞𝐾1,𝐾2
 to be the number of combinations of sons consistent with the 

partitioning (𝐾1, 𝐾2) used in the enumeration of ancestors.  Now sum up those results to obtain 

𝑄2(𝐾, 𝑆, 𝐺1, 𝐺2, 𝑆1, 𝑆2)  = ∑ (( 2−𝐺1
𝐾1−𝑆1

) ∗ (𝐾1 − 𝑆1)! ∗   ( 4−𝐺2
 𝐾2−𝑆2

) ∗ (𝐾2 − 𝑆2)! ∗ (𝐾−𝑆1−𝑆2
𝐾1−𝑆1

)
2−𝐺1+𝑆1
𝐾1=𝑆1

∗ 2! ∗

∗ (𝑆 − 2)! ∗ 𝑁6−𝐾+𝑆1+𝑆2−𝐺1−𝐺2)     

= 2! ∗ (𝑆 − 2)! ∗ (𝐾 − 𝑆1 − 𝑆2)! ∗ 𝑁6−𝐾+𝑆1+𝑆2−𝐺1−𝐺2 ∗ ∑ (( 2−𝐺1
𝐾1−𝑆1

) ∗ ( 4−𝐺2
 𝐾2−𝑆2

) ∗ ( 4−𝐾2
𝑆−𝐾2−2

))
2−𝐺1+𝑆1
𝐾1=𝑆1

  

 (24) 

 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 6𝑎) =
𝑄2(𝐾,𝑆,𝐺1,𝐺2,𝑆1,𝑆2) 

𝑇(𝐾,𝑆,𝐺1,𝐺2,𝑆1,𝑆2)
∗

1

(𝑆
𝐾)

=

2!∗(𝑆−2)!∗(𝐾−𝑆1−𝑆2)!∗𝑁6−𝐾+𝑆1+𝑆2−𝐺1−𝐺2∗∑ ((
2−𝐺1

𝐾1−𝑆1
)∗ (

4−𝐺2
 𝐾2−𝑆2

)∗ (
4−𝐾2

𝑆−𝐾2−2
))

2−𝐺1+𝑆1
𝐾1=𝑆1

  

2!∗(𝑆
𝐾)∗( 

4!

(6−𝑆)!
)∗𝑁6−𝐺

  

=  
(𝐾−𝑆1−𝑆2)!∗∑ ((

2−𝐺1
𝐾1−𝑆1

)∗ (
4−𝐺2

 𝐾−𝐾1−𝑆2
)∗ (

4−𝐾+𝐾1
6−𝑆

))
2−𝐺1+𝑆1
𝐾1=𝑆1

(𝑆
𝐾)∗ ( 4

𝑆−2)
∗ 𝑁−𝐾+𝑆1+𝑆2   (25) 

 

We can proceed directly to the case, which we’ll describe as example 6b, where there are more than 6 

sons (6 ≤ 𝑆 ≤ 14) and we consider 3 generations.  In this analysis, 𝑆3 will be the number of sons named 

after known ancestors in the 3rd generation.  As before, we make substitutions but this time in example 

5b.  We have 𝑇3(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3) = 2! ∗ 4! ∗
8!

(14−𝑆)!
∗ 𝑁14−𝐺 and  

𝑄3(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3) =  2! ∗ 4! ∗ (𝑆 − 6)! ∗ (𝐾 − 𝑆1 − 𝑆2 − 𝑆3)! ∗ 𝑁14−𝐾+𝑆1+𝑆2+𝑆3−𝐺 ∗

∑  
2−𝐺1+𝑆1
𝐾1=𝑆1

∑  (( 2−𝐺1
𝐾1−𝑆1

) ∗  ( 4−𝐺2
 𝐾2−𝑆2

) ∗ ( 8−𝐺3
 𝐾−𝐾1−𝐾2−𝑆3

) ∗ (8−𝐾+𝐾1+𝐾2
14−𝑆

))   
4−𝐺2+𝑆2
𝐾2=𝑆2

     (26) 

 

𝑃𝐸𝑥6𝑏(𝑠𝑜𝑛𝑠|(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3)) ≡ 𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 6𝑏) =
𝑄3(𝐾,𝑆,𝐺1,𝐺2,𝐺3,𝑆1,𝑆2,𝑆3)

𝑇(𝐾,𝑆,𝐺1,𝐺2,𝐺3,𝑆1,𝑆2,𝑆3)
∗

1

(𝑆
𝐾)

=

 
(𝐾−𝑆1−𝑆2−𝑆3)!∗∑ ∑  ((

2−𝐺1
𝐾1−𝑆1

)∗ (
4−𝐺2

 𝐾2−𝑆2
)∗ (

8−𝐺3
 𝐾−𝐾1−𝐾2−𝑆3

)∗ (
8−𝐾+𝐾1+𝐾2

14−𝑆
))   

4−𝐺2+𝑆2
𝐾2=𝑆2

 
2−𝐺1+𝑆1
𝐾1=𝑆1

(𝑆
𝐾)∗( 8

𝑆−6)
∗ 𝑁−𝐾+𝑆1+𝑆2+𝑆3 

 (27) 

  

Example 7 – Generations where nothing is known 
Sometimes nothing is previously known about the grandparents or great-grandparents.  Yet, based on 

information about the descendants, we may attempt to construct some hypotheses about the 
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ancestors, and then compare probabilities for various hypotheses.  Even more frequently, there is some 

information about generations 1 and 2, but none about generation 3.   Or there might be something 

known about generation 3 and not about earlier generations.  We consider each of these situations.  

Even though generations 1, 2 and 3 are all covered by previous examples, there are some simplifications 

that can be applied and that are worth noting. 

 

 

 

Example 7a – Nothing is known about generations 1 or 2 
Example 7a 

 𝑋3 + wife 𝑋4 + wife 𝑋5 + wife 𝑋6 + wife 

𝑋1 wife of 𝑋1 𝑋2 wife of 𝑋2 

 father wife  

 

𝑍1 𝑍2 𝑌1 𝑌2 𝑌3 
Chart 12 

 

 

We will refer to  as a special case but will derive the general case.   The following identity will be useful 

in this example and later (Abramowitz & Stegun, 1964).14   

∑ ( 𝑟
𝑚

) ∗𝑟+𝑠
𝑚=0  ( 𝑠

𝑛−𝑚
) = (𝑟+𝑠

𝑛
)   (28) 

 

 We can use equation (24), together with equation (28) to obtain 

 𝑄2(𝐾, 𝑆, 0,0,0,0) = 2! ∗ (𝑆 − 2)! ∗ 𝐾! ∗ 𝑁6−𝐾 ∗ ∑ (( 2
𝐾1

) ∗ ( 4
 𝐾2

) ∗ ( 4−𝐾2
𝑆−𝐾2−2

))2
𝐾1=0     

=
2!∗4∗𝐾!

(6−𝑆)!
∗ (𝑆

𝐾
) ∗ 𝑁6−𝐾  

Then 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 7𝑎) =
𝑄2(𝐾,𝑆,0,0,0,0)

𝑇2(𝐾,𝑆,0,0,0,0)
∗

1

(𝑆
𝐾)

=

2!∗4∗𝐾!

(6−𝑆)!
∗(𝑆

𝐾)∗𝑁6−𝐾

(𝑆
𝐾)∗2!∗

4!

(6−𝑆)!
∗𝑁6

   

= 𝐾! ∗  𝑁−𝐾  (29) 

                                                           
14 This equation, with the tilde notation (i.e.,  (𝑚

𝑛
) ≡ 0 if 𝑚 < 𝑛), differs slightly from what is given in the (9th 

printing of) the reference (Abramowitz & Stegun, 1964).   The equation can be derived easily by considering the 
product (𝑥 + 𝑦)𝑟 ∗ (𝑥 + 𝑦)𝑠 where each term is expanded using binomial coefficients, and then comparing the 
product to the binomial expansion of (𝑥 + 𝑦)𝑟+𝑠. 
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Example 7b – Nothing is known about generations 1, 2, 3  
For this, we can use equation (26), together with equation (28) to obtain 

𝑄3(𝐾, 𝑆, 0,0,0,0,0,0) = 2! ∗ 4! ∗ (𝑆 − 6)! ∗ 𝐾! ∗ 𝑁14−𝐾 ∗ ∑  2
𝐾1=0 ∑  (( 2

𝐾1
) ∗ ( 4

 𝐾2
) ∗ ( 8

 𝐾−𝐾1−𝐾2
) ∗4

𝐾2=0

 (8−𝐾+𝐾1+𝐾2
14−𝑆

))     

=
2!∗4!∗8!∗𝐾!

(14−𝑆)!
∗ (𝑆

𝐾
) ∗ 𝑁14−𝐾  

 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 7𝑏) =
𝑄3(𝐾,𝑆,0,0,0,0,0,0)

𝑇3(𝐾,𝑆,0,0,0,0,0,0)
∗

1

(𝑆
𝐾)

=  

2!∗4!∗8!∗𝐾!

(14−𝑆)!
∗(𝑆

𝐾)∗𝑁14−𝐾 

2!∗4!∗
8!

(14−𝑆)!
∗(𝑆

𝐾)∗𝑁14−𝐺
  

= 𝐾! ∗  𝑁−𝐾    (30) 

Since the results for example 7a and 7b are the same, it seems plausible that those results would extend 

to earlier generations. 

Example 7c – Nothing is known about generation 2 or earlier 
Again, we use equations (26) and (28). 

𝑄3(𝐾, 𝑆, 𝐺1, 0,0, 𝑆1, 0,0) =  2! ∗ 4! ∗ (𝑆 − 6)! ∗ (𝐾 − 𝑆1!) ∗ 𝑁14−𝐾+𝑆1−𝐺 ∗ ∑  
2−𝐺1+𝑆1
𝐾1=𝑆1

∑  (( 2−𝐺1
𝐾1−𝑆1

) ∗4
𝐾2=0

 ( 4
 𝐾2

) ∗ ( 8
 𝐾−𝐾1−𝐾2

) ∗ (8−𝐾+𝐾1+𝐾2
14−𝑆

))     

=  
2!∗4!∗8!∗(𝐾−𝑆1!)

(14−𝑆)!
*(𝑆−𝐺1

𝐾−𝑆1
) ∗ 𝑁14−𝐾+𝑆1−𝐺 

𝑃(𝑠𝑜𝑛𝑠|𝑒𝑥𝑎𝑚𝑝𝑙𝑒 7𝑐) =
𝑄3(𝐾,𝑆,𝐺1,0,0,𝑆1,0,0)

𝑇3(𝐾,𝑆,𝐺1,0,0,𝑆1,0,0)
∗

1

(𝑆
𝐾)

=  

2!∗4!∗8!∗(𝐾−𝑆1)!

(14−𝑆)!
∗(

𝑆−𝐺1
𝐾−𝑆1

)∗𝑁14−𝐾+𝑆1−𝐺 

2!∗4!∗
8!

(14−𝑆)!
∗(𝑆

𝐾)∗𝑁14−𝐺
  

=
(𝐾−𝑆1)!∗(

𝑆−𝐺1
𝐾−𝑆1

)

(𝑆
𝐾)

∗ 𝑁−𝐾+𝑆1  (31) 

 

 

Example 7d – Nothing is known about generations g or earlier 
We now use the principle of induction to consider the effect of adding generations of ancestors whose 

names we don’t know.  We’ll imagine starting with an ancestor-descendant analysis for ancestor-

generations 1, … , 𝑔, and then adding a further ancestor generation 𝑔 + 1 where none of those 

ancestors are known (so we label them as 𝑋𝑗).  That generation has  𝐺𝑒𝑛(𝑔 + 1) = 2𝑔+1 males.15  Also 

define 𝛽(𝑔) ≡ ∑ 𝐺𝑒𝑛(𝑖), 𝛽(0) = 0
𝑔
𝑖=1  and �̂� ≡ ∑ 𝑆𝑖

𝑔
𝑖=1 .  Let   𝑄𝑔(𝐾, 𝑆 … ) be the number of 

combinations of sons and ancestors that are consistent with information known through generation 𝑔.  

                                                           
15 Our results actually won’t depend on the value of 𝐺𝑒𝑛(𝑔). 
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We continue to make the same assumptions as before, and assume that we may know some number of 

ancestors in each generation, and that there may be some known sons named after some of those 

ancestors.  Setting the value 𝐺 to be the total number of known ancestors, the inductive assumption is 

𝑄𝑔(𝐾, 𝛽(𝑔) … ) = (𝐾 − �̂�)! ∗ (
𝛽(𝑔)−𝐺

𝐾−�̂�
) ∗  2! ∗ 4! ∗ … ∗ 𝐺𝑒𝑛(𝑔)! ∗ 𝑁𝛽(𝑔)−𝐾+�̂�−𝐺  (32) 

The first induction step is equation (31) for 𝑄3(𝐾, 6, 𝐺1, 0,0, 𝑆1, 0,0). 

1.27. Let 𝐾𝑔+1 be the number of known sons in generation 𝑔 + 1 (𝐾𝑔+1 ≤ 𝐾).  There are ( 𝐾−�̂�
𝐾𝑔+1

) 

ways of selecting those sons from amongst the 𝐾 known sons.  Then there are (𝐺𝑒𝑛(𝑔+1)
𝐾𝑔+1

) ∗

𝐾𝑔+1! ways of assigning those names to ancestors in generation 𝑔 + 1.   For the other 

ancestors in generation 𝑔 + 1, there are  𝑁𝐺𝑒𝑛(𝑔+1)−𝐾𝑔+1  possibilities.  So altogether, when 

there are  𝐾𝑔+1 known sons in generation 𝑔 + 1, there are (𝐾−�̂�
𝐾𝑔+1

) ∗ (𝐺𝑒𝑛(𝑔+1)
𝐾𝑔+1

) ∗ 𝐾𝑔+1! ∗

𝑁𝐺𝑒𝑛(𝑔+1)−𝐾𝑔+1  assignments of names to generation 𝑔 + 1. 

1.28. For each situation above, and for each chronologically ordered set of sons, consider only the 

sons older than the son whose position in the sequence is 𝛽(𝑔).   The number of those sons 

is 𝑆 −  𝛽(𝑔), of which  𝐾𝑔+1 are known, and  𝑆 −  𝛽(𝑔) −   𝐾𝑔+1 are unknown.  The names of 

the unknown sons can be chosen arbitrarily from any of the names in generation 𝑔 + 1, other 

than those that have been assigned.  There are 𝐺𝑒𝑛(𝑔 + 1) −   𝐾𝑔+1 such names.  Thus we 

have a factor of (
𝐺𝑒𝑛(𝑔+1)−  𝐾𝑔+1

𝑆− 𝛽(𝑔)−  𝐾𝑔+1
).  The aforementioned  𝑆 −  𝛽(𝑔) sons can appear in any 

chronological order so there is another factor of (𝑆 −  𝛽(𝑔))!. 

1.29. Finally, for each situation above, we must multiply by the total number of ancestor-son 

combinations corresponding to generations 1 through 𝑔.  Those have a total number of sons 

that are equal 𝛽(𝑔) and 𝐾 −  𝐾𝑔+1 known sons.  We use the inductive assumption (32), which 

gives a multiplicative factor of (
𝛽(𝑔)−𝐺

𝐾−�̂�−𝐾𝑔+1
) ∗ (𝐾 − �̂� − 𝐾𝑔+1)! ∗ 2! ∗ 4! ∗ … ∗ 𝐺𝑒𝑛(𝑔)! ∗

𝑁𝛽(𝑔)−𝐾+�̂�+𝐾𝑔+1−𝐺. 

The result is  

𝑄𝑔+1(𝐾, 𝑆 … ) = ∑ ( 𝐾−�̂�
𝐾𝑔+1

) ∗ (𝐺𝑒𝑛(𝑔+1)
𝐾𝑔+1

) ∗ 𝐾𝑔+1! ∗ 𝑁𝐺𝑒𝑛(𝑔+1)−𝐾𝑔+1 ∗ (
𝐺𝑒𝑛(𝑔+1)− 𝐾𝑔+1

𝑆− 𝛽(𝑔)− 𝐾𝑔+1
) ∗𝐾

𝐾𝑔+1=0 (𝑆 −

 𝛽(𝑔))! ∗ (
𝛽(𝑔)−𝐺

𝐾−�̂�−𝐾𝑔+1
) ∗ (𝐾 − �̂� − 𝐾𝑔+1)! ∗ 2! ∗ 4! ∗ … ∗ 𝐺𝑒𝑛(𝑔)! ∗ 𝑁𝛽(𝑔)−𝐾+�̂�+𝐾𝑔+1−𝐺   

= 2! ∗ 4! ∗ … ∗ 𝐺𝑒𝑛(𝑔)! ∗ 𝐺𝑒𝑛(𝑔 + 1)! ∗ (𝐾 − �̂�)! ∗ (𝑆−𝐺
𝐾−�̂�

) ∗
1

(𝛽(𝑔+1)−𝑆)!
∗ 𝑁𝛽(𝑔+1)−𝐾+�̂�−𝐺 (33) 

When we set (above) 𝑆 =  𝛽(𝑔 + 1), we see that the inductive step is proven.  In a similar fashion, it is 

easy to show that 

𝑇𝑔+1(𝐾, 𝑆 … ) =  
2!∗4!∗…∗𝐺𝑒𝑛(𝑔)!∗𝐺𝑒𝑛(𝑔+1)!

(𝛽(𝑔+1)−𝑆)!
∗ 𝑁  𝛽(𝑔+1)−𝐺  (34) 

Finally, putting all of this together, we find  
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𝑃𝐸𝑥7𝑑(𝑠𝑜𝑛𝑠|𝐾, 𝑆 … ) =
𝑄𝑔+1(𝐾,𝑆… )

𝑇𝑔+1(𝐾,𝑆… )
∗  

1

(𝑆
𝐾)

=
2!∗4!∗…∗𝐺𝑒𝑛(𝑔)!∗𝐺𝑒𝑛(𝑔+1)!∗(𝐾−�̂�)!∗( 𝑆−𝐺

𝐾−�̂�
)∗

1

(𝛽(𝑔+1)−𝑆)!
∗𝑁𝛽(𝑔+1)−𝐾+�̂�−𝐺

( 𝑆
𝐾 )∗

2!∗4!∗…∗𝐺𝑒𝑛(𝑔)!∗𝐺𝑒𝑛(𝑔+1)!

(𝛽(𝑔+1)−𝑆)!
∗𝑁𝛽(𝑔+1)−𝐺

  

=  
(𝐾−�̂�)!∗( 𝑆−𝐺

𝐾−�̂�
)

(𝑆
𝐾)

∗ 𝑁−𝐾+�̂�    (35) 

Combined formulas for preceding examples 
All of the above examples can be covered by the following: 

 The names aren’t known of any male ancestors prior to the 3rd ancestor generation. 

o We know  𝐺2 names from generation 2, 𝐺2 names from generation 2 and 𝐺3 names 

from generation 3. 

 All names of male ancestors are distinct from one another (through the 3rd ancestor generation). 

 We assume that there are  𝑆 sons, of which we have discovered  𝐾 names. 

o Of the known sons,  𝐾1 are named after some of the 𝐺1 known ancestral names from 

generation 1,  𝐾2 are named after some of the 𝐺2 known ancestral names from 

generation 2 and 𝐾3 are named after some of the 𝐺3 known ancestral names from 

generation 3. 

 Selection rules are covered by Error! Reference source not found. through Error! Reference 

source not found.. 

We use the notation 𝑃𝑛𝑔(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3) to denote the probability of discovering the 𝐾 names 

among 𝑆 sons, given the known information about the first three generations of ancestors, and 

assuming 𝑛𝑔 generations of ancestors.   Putting together equations (25), (27) and Error! Reference 

source not found., together with an easily-derived equation for situations with 2 sons or less 

𝑃𝑛𝑔(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3) 

=
(𝐾−𝑆1)!∗ (

2−𝐺1
𝐾−𝑆1

)∗ (2−𝐾
2−𝑆) 

 (𝑆
𝐾)∗(2

𝑆)
∗ 𝑁−𝐾+𝑆1  [if 0 < 𝑆 ≤ 2] 

=  
(𝐾−𝑆1−𝑆2)!∗∑ ( (

2−𝐺1
𝐾1−𝑆1

)∗ (
4−𝐺2

 𝐾−𝐾1−𝑆2
)∗ (

4−𝐾+𝐾1
6−𝑆

))
2−𝐺1+𝑆1
𝐾1=𝑆1

(𝑆
𝐾)∗ ( 4

𝑆−2)
∗ 𝑁−𝐾+𝑆1+𝑆2 [if 2 < 𝑆 ≤ 6] 

=  
(𝐾−𝑆1−𝑆2−𝑆3)!∗∑  

2−𝐺1+𝑆1
𝐾1=𝑆1

∑  ((
2−𝐺1

𝐾1−𝑆1
)∗ (

4−𝐺2
 𝐾2−𝑆2

)∗ (
8−𝐺3

 𝐾−𝐾1−𝐾2−𝑆3
)∗ (

8−𝐾+𝐾1+𝐾2
14−𝑆

))   
4−𝐺2+𝑆2
𝐾2=𝑆2

(𝑆
𝐾)∗( 8

𝑆−6)
∗ 𝑁−𝐾+𝑆1+𝑆2+𝑆3  [if 6 <

𝑆 ≤ 14] 

=  
(𝐾−𝑆1−𝑆2−𝑆3)!∗(

𝑆−𝐺1−𝐺2−𝐺3 
𝐾−𝑆1−𝑆2−𝑆3

)

(𝑆
𝐾)

∗ 𝑁−𝐾+𝑆1+𝑆2+𝑆3 [if 14 < 𝑆]  (36) 

  

Equation (36) is valid provided the following inequalities hold and we set the value of  𝑃3 to 0 when the 

inequalities are violated. 

 0 ≤ 𝑆𝑖 ≤ 𝐺𝑖 

 0 ≤ 𝐺1 ≤ 2, 0 ≤ 𝐺2 ≤ 4, 0 ≤ 𝐺3 ≤ 8 
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 ∑ 𝑆𝑖 ≤ 𝐾3
𝑖=1  

 0 < 𝐾 ≤ 𝑆 

 If 𝑆2 ≠ 0 then 𝑆 > 2 

 If 𝑆3 ≠ 0 then 𝑆 > 6 

We also introduce some notation that will prove to be useful later.  We define 

functions 𝑃𝑇𝑟𝑒𝑒  and 𝑃𝐵𝑎𝑦𝑒𝑠 as 

𝑃𝑇𝑟𝑒𝑒(𝑚𝑒𝑎𝑛, 𝐾, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3) ≡  ∑  𝑃𝑛𝑔(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3) ∗ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑆, 𝑚𝑒𝑎𝑛)∞
𝑆=1    

(37) 

 

𝑃𝐵𝑎𝑦𝑒𝑠(𝑝, 𝑝𝐴, 𝑝𝐵) ≡
𝑝∗𝑝𝐴

(𝑝∗𝑝𝐴+(1−𝑝)∗𝑝𝐵)
  (38) 

There is frequently a situation where names appear twice (or even more often) amongst the known 

ancestors (including ancestor generation 0).  In those instances, a son would be named after the later 

ancestor with that name, and no-one would be named after the earlier ancestor.  This has the same 

effect as if there were less members of that earlier generation – namely, 𝐺𝑒𝑛(𝑔) < 2𝑔.  It isn’t difficult 

to modify equation (36) to account for more general values of 𝐺𝑒𝑛(𝑔). 

𝑃𝑛𝑔
𝐺𝑒𝑛(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), … , 𝐺𝑒𝑛(𝑛𝑔)) 

=
(𝐾−𝑆1)!∗(

𝐺𝑒𝑛(1)−𝐺1
𝐾−𝑆1

)∗ (
𝐺𝑒𝑛(1)−𝐾

𝛽(1)−𝑆
) 

 (𝑆
𝐾)∗(

𝐺𝑒𝑛(1)
𝑆

)
∗ 𝑁−𝐾+𝑆1  [if 0 < 𝑆 ≤ 𝛽(1)] 

=  
(𝐾−𝑆1−𝑆2)!∗∑ ( (

𝐺𝑒𝑛(1)−𝐺1
𝐾1−𝑆1

)∗ (
𝐺𝑒𝑛(2)−𝐺2
 𝐾−𝐾1−𝑆2

)∗ (
𝐺𝑒𝑛(2)−𝐾+𝐾1

𝛽(2)−𝑆
) )

𝐺𝑒𝑛(1)−𝐺1+𝑆1
𝐾1=𝑆1

(𝑆
𝐾)∗ (

𝐺𝑒𝑛(2)
𝑆−𝛽(1)

)
∗ 𝑁−𝐾+𝑆1+𝑆2 [if 𝛽(1) < 𝑆 ≤ 𝛽(2)] 

=  
(𝐾−𝑆1−𝑆2−𝑆3)!∗∑  

𝐺𝑒𝑛(1)−𝐺1+𝑆1
𝐾1=𝑆1

∑  ((
𝐺𝑒𝑛(1)−𝐺1

𝐾1−𝑆1
) ∗ (

𝐺𝑒𝑛(2)−𝐺2
 𝐾2−𝑆2

)∗(
𝐺𝑒𝑛(3)−𝐺3

 𝐾−𝐾1−𝐾2−𝑆3
)∗ (

𝐺𝑒𝑛(3)−𝐾+𝐾1+𝐾2
𝛽(3)−𝑆

))   
𝐺𝑒𝑛(2)−𝐺2+𝑆2
𝐾2=𝑆2

(𝑆
𝐾)∗(

𝐺𝑒𝑛(3)
𝑆−𝛽(2)

)
∗

𝑁−𝐾+𝑆1+𝑆2+𝑆3  [if 𝛽(2) < 𝑆 ≤ 𝛽(3)] 

=  
(𝐾−𝑆1−𝑆2−𝑆3)!∗(

𝑆−𝐺1−𝐺2−𝐺3 
𝐾−𝑆1−𝑆2−𝑆3

)

(𝑆
𝐾)

∗ 𝑁−𝐾+𝑆1+𝑆2+𝑆3 [if 𝛽(3) < 𝑆]  (39) 

There will be situations where it will turn out to be useful to also have equations for  𝑄𝑛𝑔
𝐺𝑒𝑛 and 𝑇𝑛𝑔

𝐺𝑒𝑛, 

where 𝑄𝑛𝑔
𝐺𝑒𝑛 is the number of ways that ancestors and sons are consistent with the information we have, 

and 𝑇𝑛𝑔
𝐺𝑒𝑛 is the number of ways that ancestors and sons are consistent with the information we have 

about ancestors only. Unlike the equations for 𝑃𝑛𝑔
𝐺𝑒𝑛, there are factors of N that depend on how many 

generations are included of ancestors about whom we know nothing.  We will denote the factors for 

generations 4 and higher as 𝑁𝜏 .  Since they are the same in both 𝑄𝑛𝑔
𝐺𝑒𝑛 and  𝑇𝑛𝑔

𝐺𝑒𝑛, they will ultimately 

cancel out when calculating probabilities.     

𝑄𝑛𝑔
𝐺𝑒𝑛(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), … , 𝐺𝑒𝑛(𝑛𝑔)) 

= 𝑆! (𝐾 − 𝑆1)! ∗ (𝐺𝑒𝑛(1)−𝐺1
𝐾−𝑆1

) ∗ (𝐺𝑒𝑛(1)−𝐾
𝛽(1)−𝑆

) ∗ 𝑁𝐺𝑒𝑛(1)+𝐺𝑒𝑛(2)+𝐺𝑒𝑛(3)+𝜏−𝐾+𝑆1−𝐺1   [if 0 < 𝑆 ≤ 𝛽(1)] 
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= 𝐺𝑒𝑛(1)! ∗ (𝑆 − 𝛽(1))! ∗ (𝐾 − 𝑆1 − 𝑆2)! ∗ ∑ ( (𝐺𝑒𝑛(1)−𝐺1
𝐾1−𝑆1

) ∗  (𝐺𝑒𝑛(2)−𝐺2
 𝐾−𝐾1−𝑆2

) ∗
𝐺𝑒𝑛(1)−𝐺1+𝑆1
𝐾1=𝑆1

 (𝐺𝑒𝑛(2)−𝐾+𝐾1
𝛽(2)−𝑆

) ) ∗ 𝑁𝐺𝑒𝑛(1)+𝐺𝑒𝑛(2)+𝐺𝑒𝑛(3)+𝜏−𝐾+𝑆1+𝑆2−𝐺1−𝐺2 [if 𝛽(1) < 𝑆 ≤ 𝛽(2)] 

= 𝐺𝑒𝑛(1)! ∗ 𝐺𝑒𝑛(2)! ∗ (𝑆 − 𝛽(2))! ∗ (𝐾 − 𝑆1 − 𝑆2 − 𝑆3)! ∗

∑  
𝐺𝑒𝑛(1)−𝐺1+𝑆1
𝐾1=𝑆1

∑  ((𝐺𝑒𝑛(1)−𝐺1
𝐾1−𝑆1

) ∗  (𝐺𝑒𝑛(2)−𝐺2
 𝐾2−𝑆2

) ∗ ( 𝐺𝑒𝑛(3)−𝐺3
 𝐾−𝐾1−𝐾2−𝑆3

) ∗ (𝐺𝑒𝑛(3)−𝐾+𝐾1+𝐾2

𝛽(3)−𝑆
))  

𝐺𝑒𝑛(2)−𝐺2+𝑆2
𝐾2=𝑆2

∗

𝑁𝐺𝑒𝑛(1)+𝐺𝑒𝑛(2)+𝐺𝑒𝑛(3)+𝜏−𝐾+𝑆1+𝑆2+𝑆3−𝐺1−𝐺2−𝐺3   

[if 𝛽(2) < 𝑆 ≤ 𝛽(3)] 

=  𝐺𝑒𝑛(1)! ∗ 𝐺𝑒𝑛(2)! ∗ … ∗ 𝐺𝑒𝑛(𝑔 + 1)! (𝐾 − 𝑆1 − 𝑆2 − 𝑆3)! ∗
(

𝑆−𝐺1−𝐺2−𝐺3 
𝐾−𝑆1−𝑆2−𝑆3

)

(𝛽(𝑔+1)−𝑆)!
∗

                              𝑁𝐺𝑒𝑛(1)+𝐺𝑒𝑛(2)+𝐺𝑒𝑛(3)+𝜏−𝐾+𝑆1+𝑆2+𝑆3−𝐺1−𝐺2−𝐺3 [𝛽(𝑔) < 𝑆 ≤ 𝛽(𝑔 + 1)] and 3 < 𝑔  (40)  

          

𝑇𝑛𝑔
𝐺𝑒𝑛(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), … , 𝐺𝑒𝑛(𝑛𝑔)) 

=
𝐺𝑒𝑛(1)!∗𝐺𝑒𝑛(2)!∗…∗𝐺𝑒𝑛(𝑔+1)!

(𝛽(𝑔+1)−𝑆)!
∗ 𝑁𝐺𝑒𝑛(1)+𝐺𝑒𝑛(2)+𝐺𝑒𝑛(3)+𝜏−𝐺1−𝐺2−𝐺3 [if 𝛽(𝑔) < 𝑆 ≤ 𝛽(𝑔 + 1)] 

 (41) 

Equations (39), (40) and (41) are valid provided the following inequalities hold and we set the values of 

  𝑃3
𝐺𝑒𝑛, 𝑄3

𝐺𝑒𝑛 and 𝑇3
𝐺𝑒𝑛  to 0 when the inequalities are violated. 

 0 ≤ 𝑆𝑖 ≤ 𝐺𝑖 

 0 ≤ 𝐺1 ≤ 𝐺𝑒𝑛(1), 0 ≤ 𝐺2 ≤ 𝐺𝑒𝑛(2), 0 ≤ 𝐺3 ≤ 𝐺𝑒𝑛(3) 

 ∑ 𝑆𝑖 ≤ 𝐾3
𝑖=1  

 0 < 𝐾 ≤ 𝑆 

 If 𝑆2 ≠ 0 then 𝑆 > 𝛽(1) 

 If 𝑆3 ≠ 0 then 𝑆 > 𝛽(2) 

Similar to equation  (37) we define 𝑃𝑇𝑟𝑒𝑒
𝐺𝑒𝑛  as 

 𝑃𝑇𝑟𝑒𝑒
𝐺𝑒𝑛 (𝑚𝑒𝑎𝑛, 𝐾, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), 𝐺𝑒𝑛(2), 𝐺𝑒𝑛(3)) ≡

lim
𝑛𝑔→∞

(∑  𝑃𝑛𝑔
𝐺𝑒𝑛(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), … , 𝐺𝑒𝑛(𝑛𝑔)) ∗ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑆, 𝑚𝑒𝑎𝑛))

 𝛽(𝑛𝑔)
𝑆=1   

 (42) 

A case study – Jonatan of Drobin 

Introduction of the null hypothesis 
The methods of statistical and combinatorial analysis will be illustrated in what follows, with the 

examination of a hypothesis regarding Jonas (JD), a.k.a. Rabbi Jonatan Eybeschuetz of Drobin, and his 

wife Dwojra.  Dwojra’s father was (according to certain Drobin vital records) named Jacob.  Jonas lived 

from approximately 1720 to approximately 1768.  As it happens, there are several family histories 

(typically found in the prefaces to 19th century rabbinical works) from which one would deduce that JD’s 
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father was named Aron, and that Aron’s father-in-law was named Meyer.16  However, such histories and 

deductions are occasionally inaccurate.  For the purposes of the analyses that follow, I will assume that 

there is some possibility of error in these documents regarding the claim that Aron was Jonas’s father, 

and I will somewhat arbitrarily propose a 20% probability that the claim was invalid (by which I mean 

this: whether or not it turns out that Aron really was the father of Jonas, that conclusion cannot be 

drawn from the aforementioned documents, since their conclusions are based on erroneous 

information).  In addition to the anecdotal information we have about Aron, there are also many vital 

records from Drobin and elsewhere, dating from approximately 1808, of JD’s descendants.  Then, based 

on the information in these vital records, I will apply Bayes’ (equation (1)) theorem to derive the 

probability that Aron was JD’s father.  In applying Bayes’ theorem, I will assume the above proposed 

20% probability that, based on anecdotal evidence, Aron was JD’s father.17   

There are reasons to believe that there was in fact an Aron who, if not the father of JD, was his uncle – 

and that Aron’s father-in-law was Meyer.  So the assumption here will be that there is 100% probability 

that Meyer is JD’s father’s father-in-law provided that Aron is JD’s father.  Separately, based on 

anecdotal information including some gravestone inscriptions, also assume that JD has (with 100% 

probability) a grandfather named Nuta.  Finally, also based on anecdotal information, assume that JD 

has two great-grandfathers named Eyzyk and Mosze. (The names of the great-grandfathers will be 

ignored in most analyses below, and will only be considered in certain cases where they are explicitly 

mentioned.)   All of this information is summarized in the following chart.  

Documented Ancestors of Jonas and Dwojra 

Eyzyk + wife Mosze + wife 𝑋3 + wife 𝑋4 + wife 𝑋5 + wife 𝑋6 + wife 𝑋7 + wife 𝑋8 + wife 

Nuta wife of Nuta Meyer wife of Meyer 𝑋1 wife of 𝑋1 𝑋2 wife of 𝑋2 

 Aron  wife of Aron Jacob  wife of Jacob  

   Jonas Dwojra    

Chart 13 

The question to be answered is whether the records of descendants of JD support or reject the following 

null hypothesis: 

𝐻∅
𝐽𝐷

: “Aron is the father of JD” with 𝑃(𝐻∅
𝐽𝐷

) = 0.80  (43) 

with an alternative hypothesis: 

                                                           
16 Most information about JD’s family, has been provided to me by Dr. Heshel Teitelbaum.  An example (amongst 
many) of such anecdotal information can be found in (Blokherovitsh, 1939) page 16 
 

דרובנין אבר׳׳ק אייבעשיץ יונתן מוח״ר הרה״נ חתן( ט . 

שטעדבורז אבד״ק אייבעשיץ פירר אהרן וה״רמ חמופלנ' בהרה״ג( י  

 
17 It’s important to take account, as we have done, of the anecdotal information about Aron.  Otherwise, we would 
be examining a very different scenario where we would be making probabilistic analyses based on the assumed 
frequency of the first name Aron in the general Jewish population.  That number can by hypothesized to be about 
2%, based on a study of Ellis Island records as published by Yannay Spitzer in 2012 at 
https://yannayspitzer.net/2012/07/24/most-common-jewish-names/  with similar results at 
http://www.jewishgen.org/databases/USA/1890nyNames.htm. 

https://yannayspitzer.net/2012/07/24/most-common-jewish-names/
http://www.jewishgen.org/databases/USA/1890nyNames.htm
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𝐻𝐴
𝐽𝐷

: “Aron is not the father of JD” with  𝑃(𝐻𝐴
𝐽𝐷

) = 0.20 (44) 

 

The null hypothesis will be rejected if, based on statistical inference, the probability of 𝐻∅
𝐽𝐷 given the 

evidence from records of JD’s descendants, is less than the level of significance.  For this paper, the level 

of significance will be set to 5%.   

 

Children and grandsons of Jonas of Drobin and Dwojra 
The analysis which follows will be based on records of the children and grandsons of JD and his wife 

Dwojra.  It’s important to note that those records are somewhat fluid.  As time passes, it’s reasonably 

likely that new records will be found which will either reveal new children or grandchildren. Also, there 

are a few sub-branches for which the names or connections to JD are moderately speculative.   There 

may or may not eventually be further evidence one way or the other about these sub-branches.  Here is 

the current tree (limited to children and grandsons) to be used in this paper. 

2. Jonas (~1720 – ~1768) + Dwojra 

2.1. Jacob (1743 –?) + wife 

2.1.1. Nachman-Wulf (1778 –?) (double names will be hyphenated)  

2.1.2. Meyer-Nuta (1791 – before 1866) 

2.2. Daughter + Jacob-Lipman (1743 –?) (son of Haim) 

2.2.1. Israel (? – ?) 

2.2.2. Jonas (1774 –?) 

2.3. Abraham (? – before 1810) + Laja (? – ~1770) 

2.3.1. Leyzor (1749 – 1830) 

2.3.2. Jonas (~1769 – 1821) 

 

Abraham (? – before 1810) + Szajndel (? – ?) 

 

2.3.3. Mosze-Haim (1770 – 1833) 

2.3.4. Chaskel (1780 – 1831) 

2.4. Fajga (1743 – 1823) + Lewek (1743 – 1819) (son of Jacob) 

2.4.1. Jacob (1771 –?) 

2.4.2. Jonas (1799 – 1863) 

2.5. Eyzyk (1768 – 1827) + Hudes (1780 – 1826) (daughter of Haim Meyer (son of Jacob)) 

2.5.1. Jonas (1809 – 1810) 

2.5.2. Hersz (1811 –?) 

2.5.3. Jacob (1817 –?) 

2.5.4. Mathias (1819 –?)  

2.5.5. Eliasz-Lewek (1823 –?) 

2.6. Tanchum (? – ?) + wife (Assume equal probability that JD’s child is either Tanchum or Tanchum’s 

wife) 

2.6.1. Abraham (1778 – 1847) 

2.7. Mosze (? – ?) + wife (Assume equal probability that JD’s child is either Mosze or Mosze’s wife) 
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2.8. Hersz (aka Naftali Hersz) (? – ?) + wife  

2.8.1. Szmuel (? – ?) 

The default set of sons is  

Jacob Abraham Eyzyk Tanchum Mosze Hersz 

Chart 14 

The stage is now set for analysis.   

 

Sons of Rabbi Jonas of Drobin  
To the list of General Assumptions above, and to the known facts mentioned above about the ancestors 

of Jonas and his wife, add the following assumptions that are specific to JD. 

JD1. The fathers of Jonas and his wife died before the birth of their first-born son, the 

grandfathers of Jonas and his wife died before the birth of the third-born son and the great-

grandfathers of Jonas and his wife died before the birth of the seventh-born son.    (This 

assumption permits an analysis in which the names of all male ancestors, are available for 

the naming of sons.) 

JD2. Jonas and Dwojra enjoyed, as a couple, 25 child-bearing years. 

JD3. Nothing is known about any male ancestors earlier than the great-grandfathers (that’s 

actually not true, but the assumption will be made here for simplicity of analysis). 

 

From Chart 13, and from list 2 above, we can set the parameters of equation (36) to be  𝐾 = 6, 𝐺1 =

2, 𝐺2 = 2, 𝐺3 = 2, 𝑆1 = 1, 𝑆2 = 0, 𝑆3 = 2.  The probability, q(S), that Jonas had S sons is, from assumption 

GA3, 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑆, 5). Therefore, using the notation of equation (37) 

𝑃("𝐽𝐷 𝑠𝑜𝑛𝑠"|𝐻∅
𝐽𝐷

) =   𝑃𝑇𝑟𝑒𝑒(5,6,2,2,2,1,0,2) =   0.0015 ∗ 𝑁−5  (45) 

where the term “JD sons” means “known sons of Jonas” and N has the same meaning as earlier 

Next, analyze 𝑃("𝐽𝐷 𝑠𝑜𝑛𝑠"|𝐻𝐴
𝐽𝐷

), i.e., the probability of observing the known sons of Jonas, given the 

alternate hypothesis that Aron was not the father of Jonas.  In this case, the parameters of equation (36) 

must be adjusted to remove both Aron and his father-in-law Meyer, and we have  

𝑃("𝐽𝐷 𝑠𝑜𝑛𝑠"|𝐻𝐴
𝐽𝐷

) =  𝑃𝑇𝑟𝑒𝑒(5,6,1,1,2,1,0,2) =     0.0094 ∗ 𝑁−5  (46) 

 
As above, we can now apply the Bayes equation (equation (38)).  

𝑃(𝐻∅
𝐽𝐷

|"𝐽𝐷 𝑠𝑜𝑛𝑠") = 𝑃𝐵𝑎𝑦𝑒𝑠 (𝑃(𝐻∅
𝐽𝐷

), 𝑃("𝐽𝐷 𝑠𝑜𝑛𝑠"|𝐻∅
𝐽𝐷

) , 𝑃("𝐽𝐷 𝑠𝑜𝑛𝑠"|𝐻𝐴
𝐽𝐷

))   

Substituting the values in equations from (43), (44), (45) and (46) 

𝑃(𝐻∅
𝐽𝐷

|"𝐽𝐷 𝑠𝑜𝑛𝑠") = 0.39  (47) 

 

In words, our analysis shows a 39% probability, of the validity of the null hypothesis (Aron is the father 

of JD), given the names of the 6 sons of Jonas found in the records.  This is certainly much higher than 
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the level of significance (5%) that has been chosen in this paper, and therefore we cannot reject the null 

hypothesis on the basis of the sons of Jonas. 

 

Now we can see how 𝑃(𝐻∅
𝐽𝐷

|"𝐽𝐷 𝑠𝑜𝑛𝑠") varies depending on variations of the family tree.  Some 

variations of interest, including the one above, are given in the following table. 

 

Table 1 – Sons of Jonas 

Differences from 
Chart 13 and  Chart 

14 

∅: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑∅ = 𝑷𝑻𝒓𝒆𝒆(∅) 

𝑨: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑𝑨 = 𝑷𝑻𝒓𝒆𝒆(𝑨) 

𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference (5,6,2,2,2,1,0,2) 

𝑝∅ = 0.0015 ∗ 𝑁−3 
(5,6,1,1,2,1,0,2) 

𝑝𝐴 = 0.0094 ∗ 𝑁−3 
0.39 

Null hypothesis 
doesn’t include 

Meyer 

(5,6,2,1,2,1,0,2) 
𝑝∅ = 0.0042 ∗ 𝑁−3 

(5,6,1,1,2,1,0,2) 
𝑝𝐴 = 0.0094 ∗ 𝑁−3 

0.64 

 Chart 14 without 

Tanchum 

(5,5,2,2,2,1,0,2) 
𝑝∅ = 0.00070 ∗ 𝑁−2 

(5,5,1,1,2,1,0,2) 
𝑝∅ = 0.0021 ∗ 𝑁−2 

0.58 

Chart 14 without 

Mosze 

(5,5,2,2,2,1,0,1) 
𝑝∅ = 0.00070 ∗ 𝑁−3 

(5,5,1,1,2,1,0,2) 
𝑝∅ = 0.00070 ∗ 𝑁−3 

0.34 

Chart 14 without 

Mosze or Tanchum 

(5,4,2,2,2,1,0,1) 
𝑝∅ = 0.0045 ∗ 𝑁−2 

(5,4,2,2,2,1,0,1) 
𝑝∅ = 0.015 ∗ 𝑁−2 

0.55 

 

Although the analysis of children of Jonas have included the 3 ancestor-generations of Jonas and his 

wife, we will, in the analysis of children of Jonas, ignore the information we have about Jonas’ great-

great-grandparents (these are in the 4th ancestor-generation of the children of Jonas.  This will simplify 

the calculations and will not greatly alter the results. 

Sons of Jacob 
There are two significant ways in which the analysis of Jacob’s family tree differs from the cases studied 

previously.  First of all, the known sons have double names.   Secondly, Jacob has the same name as one 

of his grandfathers, and therefore no son is named after that grandfather.  In order to proceed, we must 

therefore add to the list of general assumptions above, and to the known information mentioned above 

about the ancestors of Jonas and his wife.  The following assumptions are specific to Jacob, the son of 

JD. 

J1. When sons are (mostly) given name-pairs18: 

a. Name-pairs correspond to ancestors from the same generation when possible. 

b. When it’s not possible for name-pairs to be from a single ancestor-generation, then 

only single names are used. 

c. Assume also that names are chosen in order so that near-generations are exhausted 

before the next ancestor-generation is used – but that within a generation, names are 

chosen at random.   

                                                           
18 These assumptions might not be borne out through a detailed survey of naming patterns.  We will discuss this 
later on in the paper. 
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J2. The fathers of Jacob and his wife died before the birth of their first-born son, the 

grandfathers of Jacob and his wife died before the birth of the third-born son, and the great-

grandfathers of Jacob and his wife died before the birth of the seventh-born son.   (This 

assumption permits an analysis in which the names of all male ancestors, are available for 

the naming of sons.) 

J3. Jacob and his wife enjoyed, as a couple, 25 child-bearing years. 

J4. Nothing is known about any male ancestors earlier than the great-grandfathers (that’s 

actually not true, but the assumption will be made here for simplicity of analysis and could 

be checked later, to presumably remove it as an assumption). 

Jacob’s family tree, with and without the null hypothesis is shown in Chart 15 and Chart 16. 

Null hypothesis 𝐻∅
𝐽𝐷: Ancestors of Jacob and wife 

Nuta + wife Meyer + wife 𝑋4+wife 𝑋5+wife 𝑋6+wife 𝑋7+wife 𝑋8+wife 𝑋9+wife 

Aron wife Jacob wife 𝑋2 wife 𝑋3 wife 

Jonas wife 𝑋1 wife 

Jacob wife 

Chart 15 

As usual, the names 𝑋𝑖  aren’t known.   It will be convenient below to let 𝑍1 = Meyer, 𝑍2 = Nuta, 

and 𝑍𝑖 = 𝑋𝑖+1 for 3 ≤ 𝑖 ≤ 8. The steps of the analysis follow. 

JN1. We will see shortly that Jacob must have had at least 4 sons.  For 4 ≤ 𝑆 ≤ 7, we compute 

the total number of possible combinations of sons.   

a. Jacob’s first son would be named after Jacob’s father and father-in-law, with a factor 

of 𝑁 possible names for 𝑋1. 

i. Jonas-𝑋1 

b. His next two sons would be named in one of the following combinations (noting that 

Jacob would not give the name Jacob to one of his sons) and in either order (resulting 

in a factor of 2), with a factor of 𝑁2 possible names for 𝑋2 and 𝑋3. 

i. Aron-𝑋2, 𝑋3 

ii. Aron-𝑋3, 𝑋2 

iii. Aron, 𝑋2-𝑋3 

c. The 4th son would be named after a pair (𝑍𝑖 , 𝑍𝑗) for 1 ≤ 𝑖 < 𝑗 ≤ 8.  There are (8
2
) such 

possibilities. The 5th son would be named after a pair selected from the remaining 6 

names and so on.  The names can be in any order therefore resulting in an extra factor 

of (𝑆 − 3)!.  Altogether, for the 4th through 7th sons, the number of combinations 

is (𝑆 − 3)! ∗
∏ (16−2∗𝑖

2 )𝑆
𝑖=4

(𝑆−3)!
 with a factor of 𝑁6 possible names for 𝑋4 through 𝑋9.19 

JN2. There is a factor of 𝑁 for the unknown ancestor of generation 1. The son Nachman-Wulf is 

either named after the 2nd generation or the 3rd generation of ancestors.   

                                                           
19 We will frequently encounter the expression ∏ (𝑘−2∗𝑖

2
)𝑛

𝑖=𝑚 .  This can be simplified although in general I have 

preferred to leave the expression in its unsimplified form.  The simplified form is ∏ (𝑘−2∗𝑖
2

)𝑛
𝑖=𝑚 =

 
(𝑘−2∗𝑚)!

(𝑘−2∗(𝑛+1))!∗2𝑛+1−𝑚 = ( 𝑘−2∗𝑚
2∗(𝑛+1−𝑚)

) ∗
(2∗(𝑛+1−𝑚))!

2𝑛+1−𝑚 . 
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a. If he was named after the 2nd generation, then the names of  𝑋2 and 𝑋3 are Nachman 

and Wulf in either order (so there are 2 ∗ 𝑁7 options). 

b. If he was named after the 3rd generation, then there are 
6!

4!
 possible ways for 2 of the 6 

unknown great-grandfathers to be named (so there are 
6!

4!
∗ 𝑁7 possible options) 

JN3. Now analyze, for each of JN2.a and JN2.b, the number of combinations of sons consistent 

with the information we have about the sons of Jacob. 

a. (For each combination of ancestors named as in JN2.a) The first son is Jonas-𝑋1. The 

next two sons are Aron and Nachman-Wulf, in either order (so a factor of 2).    

Amongst the next sons, one is named Meyer-Nuta, and if there are other sons (up to 7 

sons), their names are pairs chosen from the remaining 6 great-grandfathers.  So for 5 

or more sons, (using an analysis similar to JN1.c) there are (𝑆 − 3)! ∗
∏ (16−2∗𝑖

2 )𝑆
𝑖=5

(𝑆−4)!
 

options.   

b. (For each combination of ancestors as named as in JN2.b).  The first son is Jonas-𝑋1.  

The next two sons are in one of three combinations – (Aron-𝑋2, 𝑋3), (Aron-𝑋3, 

𝑋2), (Aron, 𝑋2-𝑋3) – in either order (so a factor of 2 ∗ 3).  The remaining 𝑆 − 3 sons 

can be named in any order, so there is a factor of (𝑆 − 3)!.  Two of those sons are 

Meyer-Nuta and Nachman-Wulf.  For the remaining sons, there are (similar to before) 

 
∏ (16−2∗𝑖

2 )𝑆
𝑖=6

(𝑆−5)!
 options.    

JN4. Putting together the above, the results for 4 through 7 sons are therefore: 

a. 𝑃𝐽𝑎𝑐𝑜𝑏(4 𝑠𝑜𝑛𝑠|∅) =  
2

3∗(8
2)∗(4

2)
∗ 𝑁−2 

b. 𝑃𝐽𝑎𝑐𝑜𝑏(5 𝑠𝑜𝑛𝑠|∅) =  
2

3∗(8
2)∗(5

2)
∗ 16 ∗ 𝑁−2 

c. 𝑃𝐽𝑎𝑐𝑜𝑏(6 𝑠𝑜𝑛𝑠|∅) =  
2

3∗(8
2)∗(6

2)
∗ 21 ∗ 𝑁−2 

d. 𝑃𝐽𝑎𝑐𝑜𝑏(7 𝑠𝑜𝑛𝑠|∅) =  
2

3∗(8
2)∗(7

2)
∗ 40 ∗ 𝑁−2 

 

JN5. For greater than 7 sons, we will proceed by induction.  Also, for simplicity, ignore terms of 

the form 𝑁𝜏 of the kind used in equation (40).  These cancel out in the computation of 

probabilities. 

a. The derivation uses the following notation: 

i. 𝑄𝐽(𝑆|∅) ≡  the number of combinations of S sons, consistent with Chart 15 and 

with further ancestor generations (as required for naming the sons) consisting of 

unknown ancestors. 

ii. 𝑄𝐽(𝑆|∅′) ≡  the number of combinations of S sons, consistent with Chart 15 and 

with further ancestor generations (as required for naming the sons) consisting of 

unknown ancestors, except assuming Jacob’s only known son is Meyer-Nuta. 

iii. 𝑇𝐽(𝑆|∅) ≡ the number of combinations of S sons, consistent with the known 

information about Jacob’s ancestors (only) in Chart 15 and with further ancestor 

generations (as required for naming the sons) consisting of unknown ancestors. 

iv.  𝐺𝑒𝑛𝐽(𝑖) ≡ the number of males in ancestor generation 𝑖. 
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v. 𝛽𝐽(𝑔) ≡ ∑ [𝐺𝑒𝑛𝐽(𝑖)/2]
𝑔
𝑖=1  where the notation [] denotes the rounding-up of 

fractions.20 

b. The inductive assumptions for 𝑆 ≥ 7 and 𝛽𝐽(𝑔) < 𝑆 ≤ 𝛽𝐽(𝑔 + 1) , are: 

i. 𝑄𝐽(𝑆|∅) =  16 ∗ (3 ∗ 𝑆 − 11) ∗ ∏ (16−2∗𝑖
2

) ∗7
𝑖=5

… ∗ ∏ (2∗(𝛽𝐽(𝑔+1)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+1)−7𝑆

𝑖=𝛽𝐽(𝑔)+1   

ii. 𝑄𝐽(𝑆|∅′) =  24 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+1)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔)+1  ∗ 𝑁2∗𝛽𝐽(𝑔+1)−5 

iii. 𝑇𝐽(𝑆|∅) = 6 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=4 ∏ (2∗(𝛽𝐽(𝑔+1)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+1)−5𝑆

𝑖=𝛽𝐽(𝑔)+1  

c. The initial step of the inductive proof will be 𝑆 = 7.  Compare the values above, 

for 𝑆 = 7, with the values from JN1 through JN3.  The inductive proofs follow.   

d. Consider 𝛽𝐽(𝑔 + 1) < 𝑆 ≤ 𝛽𝐽(𝑔 + 2).  Partition the cases into those where Nachman-

Wulf is named after one of the first 𝑔 + 1 generations, and those where Nachman-

Wulf is named after generation 𝑔 + 2. 

i. If he was named after one of the first 𝑔 + 1 generations, then the first 𝛽𝐽(𝑔 + 1) 

sons are named as in the calculation of 𝑄𝐽(𝑆|∅) for 𝛽𝐽(𝑔) < 𝑆 ≤ 𝛽𝐽(𝑔 + 1) and 

the later sons are named after generation 𝑔 + 2.  The number of ways those 

later sons can be named are 
(𝑆− 𝛽𝐽(𝑔+1))!∗∏ (

2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖= 𝛽𝐽(𝑔+1)+1

(𝑆− 𝛽𝐽(𝑔+1) )!
∗

𝑁2∗( 𝛽𝐽(𝑔+2)− 𝛽𝐽(𝑔+1)).  The total contribution from this partition is therefore 

𝑄𝐽( 𝛽𝐽(𝑔 + 1)|∅) ∗
(𝑆− 𝛽𝐽(𝑔+1))!∗∏ (

2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖= 𝛽𝐽(𝑔+1)+1

(𝑆− 𝛽𝐽(𝑔+1))!
∗

𝑁2∗( 𝛽𝐽(𝑔+2)− 𝛽𝐽(𝑔+1)) = 16 ∗ (3 ∗  𝛽𝐽(𝑔 + 1) − 11) ∗ ∏ (16−2∗𝑖
2

) ∗7
𝑖=5

… ∗ ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+2)−7𝑆

𝑖=𝛽𝐽(𝑔+1)+1 .                         

ii. If Nachman-Wulf was named after an ancestor in generation 𝑔 + 2 then the first 

 𝛽𝐽(𝑔 + 1) sons are named as in the calculation of 𝑄𝐽(𝑆|∅′) for 𝛽𝐽(𝑔) < 𝑆 ≤

𝛽𝐽(𝑔 + 1). In generation 𝑔 + 2, two ancestors are named Nachman and Wulf, 

and this can happen in 2 ∗ (𝐺𝑒𝑛𝐽(𝑔+2)

2
) ∗ 𝑁2∗(𝛽𝐽(𝑔+2)−𝛽𝐽(𝑔+1)−1) ways.  The sons 

beyond number 𝛽𝐽(𝑔 + 1) (in other words, sons who are younger than the 

oldest ≥sons) are named after generation 𝑔 + 2, but one of them is named after 

Nachman and Wulf.  The number of such combinations is (𝑆 − 𝛽𝐽(𝑔 + 1))! ∗

∏ (
2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+2

(𝑆−𝛽𝐽(𝑔+1)−1)!
 where I will adopt the convention that this term equals 

1 if 𝑆 = 𝛽𝐽(𝑔 + 1) + 1.  So the total contribution from this partition is  

𝑄𝐽( 𝛽𝐽(𝑔 + 1)|∅′) ∗ 2 ∗ (𝐺𝑒𝑛𝐽(𝑔+2)

2
) ∗ (𝑆 − 𝛽𝐽(𝑔 + 1)) ∗

∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+2 ∗ 𝑁2∗(𝛽𝐽(𝑔+2)−𝛽𝐽(𝑔+1)−1) = 24 ∗ 2 ∗ (𝑆 − 

𝛽𝐽(𝑔 + 1)) ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+1 ∗ 𝑁2∗𝛽𝐽(𝑔+2)−7. 

                                                           
20 As an example,  [

3

2
] = 2.  We use this here because in generation 2, there are only 3 ancestors whose names can 

be used for naming the sons of Jacob, and therefore one son has a name-pair, and the other has a single name. 
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e. For 𝛽𝐽(𝑔 + 1) < 𝑆 ≤ 𝛽𝐽(𝑔 + 2), the calculation of 𝑄𝐽(𝑆|∅′) is straightforward.  The 

total of combinations is 𝑄𝐽(𝛽𝐽(𝑔 + 1)|∅′) ∗ ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+1 ∗

𝑁
2∗(𝛽𝐽(𝑔+2)−𝛽𝐽(𝑔+1))

= 24 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗𝑆

𝑖=𝛽𝐽(𝑔+1)+1

𝑁2∗𝛽𝐽(𝑔+2)−5. 

f. Again, consider 𝛽𝐽(𝑔 + 1) < 𝑆 ≤ 𝛽𝐽(𝑔 + 2).  The total of possible combinations 

consistent with ancestors, is 𝑇𝐽(𝛽𝐽(𝑔 + 1)|∅) ∗ ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+1 ∗

𝑁
2∗(𝛽𝐽(𝑔+2)−𝛽𝐽(𝑔+1))

= 6 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=4 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗𝑆

𝑖=𝛽𝐽(𝑔+1)+1

𝑁2∗𝛽𝐽(𝑔+2)−5. 

g. Finally, putting this all together, we obtain for 𝛽𝐽(𝑔 + 1) < 𝑆 ≤ 𝛽𝐽(𝑔 + 2), the proof 

of the induction step: 

𝑄𝐽(𝑆|∅) = (16 ∗ (3 ∗  𝛽𝐽(𝑔 + 1) − 11) + 24 ∗ 2 ∗ (𝑆 − 𝛽𝐽(𝑔 + 1))) ∏ (16−2∗𝑖
2

) ∗7
𝑖=5

… ∗ ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+2)−7𝑆

𝑖=𝛽𝐽(𝑔+1)+1  

= 16 ∗ (3 ∗ 𝑆 − 11) ∗ ∏ (
16 − 2 ∗ 𝑖

2
) ∗ … ∗

7

𝑖=5

∏ (
2 ∗ (𝛽𝐽(𝑔 + 2) + 1 − 𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+2)−7

𝑆

𝑖=𝛽𝐽(𝑔+1)+1

 

 

𝑄𝐽(𝑆|∅′) =  24 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+1  ∗ 𝑁2∗𝛽𝐽(𝑔+2)−5 

 

𝑇𝐽(𝑆|∅) = 6 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=4 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+2)−5𝑆

𝑖=𝛽𝐽(𝑔+1)+1   

h. We now can use the inductive assumptions above (and remembering the selection 

factor (𝑆
2
)), to derive the probability equation for 𝑆 > 7. 

𝑃𝐽𝑎𝑐𝑜𝑏(𝑆 𝑠𝑜𝑛𝑠|∅) =
𝑄𝐽(𝑆|∅)

𝑇𝐽(𝑆|∅)
=

16∗(3∗𝑆−11)

6∗(8
2)∗(𝑆

2)
∗ 𝑁−2   

 

JN6. The final result for the null hypothesis is then  

𝑃("𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠"|𝐻∅
𝐽𝐷

) =  ∑  𝑃𝐽𝑎𝑐𝑜𝑏(𝑆 𝑠𝑜𝑛𝑠|∅) ∗ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁, 5)∞
𝑆=4 =   0.023 ∗ 𝑁−2  (48) 

Next, analyze 𝑃("𝐽 𝑠𝑜𝑛𝑠"|𝐻𝐴
𝐽𝐷

), i.e., the probability of observing the known sons of Jacob, given the 

alternate hypothesis that Aron was not the father of Jonas. 

Alternate hypothesis 𝐻𝐴
𝐽𝐷: Ancestors of Jacob and wife 

Nuta + wife 𝑋5 + wife 𝑋6+wife 𝑋7+wife 𝑋8+wife 𝑋9+wife 𝑋10+wife 𝑋11+wife 

𝑋2 wife Jacob wife 𝑋3 wife 𝑋4 wife 

Jonas wife 𝑋1 wife 

Jacob wife 
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Chart 16 

The names 𝑋𝑖  aren’t known.  It will be convenient below to let 𝑍1 = Nuta,  and 𝑍𝑖 = 𝑋𝑖+3 for 1 ≤ 𝑖 ≤

8.  The steps of the analysis follow. 

JA1. We will see shortly that Jacob must have had at least 4 sons.  For 4 ≤ 𝑆 ≤ 7, we compute 

the total number of possible combinations of sons. 

b. Jacob’s first son would be named after his father and father-in-law, with a factor of 𝑁 

possible names for 𝑋1. 

i. Jonas-𝑋1 

b. His next two sons would be named in one of the following combinations (noting that 

Jacob would not give the name Jacob to one of his sons) and in either order (resulting 

in a factor of 2), with a factor of 𝑁3 possible names for 𝑋1,𝑋2 and 𝑋3. 

i. 𝑋𝑖-𝑋𝑗, 𝑋𝑘 where 1 ≤ 𝑖 < 𝑗 ≤ 3, 1 ≤ 𝑘 ≤ 3, and 𝑖 ≠ 𝑘 ≠ 𝑗 

c. The 4th son would be named after a pair (𝑍𝑖 , 𝑍𝑗) for 1 ≤ 𝑖 < 𝑗 ≤ 8.  There are (8
2
) such 

possibilities. The 5th son would be named after a pair selected from the remaining 6 

names and so on.  The names can be in any order therefore resulting in an extra factor 

of (𝑆 − 3)!.  Altogether, for the 4th through 7th sons, the number of combinations 

is (𝑆 − 3)! ∗
∏ (16−2∗𝑖

2 )𝑆
𝑖=4

(𝑆−3)!
 with a factor of 𝑁7 possible names for 𝑋5 through 𝑋11. 

JA2. There is a factor of 𝑁 for the unknown ancestor of generation 1. The son Nachman-Wulf is 

either named after the 2nd generation or the 3rd generation of ancestors.   

a. If he was named after the 2nd generation, then the possible name assignments of 

Nachman and Wulf are  (𝑋1, 𝑋2), (𝑋1, 𝑋3) and (𝑋2, 𝑋3) in either order (so there are 6 ∗

𝑁 options).  Furthermore, the name Meyer would be assigned to one of the 𝑋𝑖’s in the 

3rd generation (7 ∗ 𝑁6 options). 

b. If he was named after the 3rd generation, then there are  𝑁3 possible options for the 

names in the 2nd generation.  In the 3rd generation, one of the 𝑋𝑖’s is assigned to 

Meyer, and of the remaining six 𝑋𝑖’s, two are assigned – in either order – to Nachman 

and Wulf, hence a total of 7 ∗ (6
2
) ∗ 2 ∗ 𝑁4  possible options.  

JA3. Now analyze, for each of  JA2.a and JA2.b, the number of combinations of sons consistent 

with the information we have about the sons of Jacob. 

a. (For each combination of ancestors named as in JA2.a) The first son is Jonas-𝑋1. The 

next two sons are 𝑋𝑖  and Nachman-Wulf, in either order (so a factor of 2).    Amongst 

the next sons, one is named Nuta-𝑋𝑗, and if there are other sons (up to 7 sons), their 

names are pairs chosen from the remaining 6 great-grandfathers.  So for 5 or more 

sons, (using an analysis similar to JA1.c) there are (𝑆 − 3)! ∗
∏ (16−2∗𝑖

2 )𝑆
𝑖=5

(𝑆−4)!
 options.   

b. (For each combination of ancestors as named as in JA2.b).  The first son is Jonas-𝑋1.  

The next two sons are in one of three combinations – [(𝑋1 − 𝑋2), 𝑋3], [(𝑋1 −

𝑋3), 𝑋2], [(𝑋2 − 𝑋3), 𝑋1] – in either order (so a factor of 2 ∗ 3).  The remaining 𝑆 − 3 

sons can be named in any order, so there is a factor of (𝑆 − 3)!.  Two of those sons 

are Nuta-𝑋𝑗 and Nachman-Wulf.  For the remaining sons, there are (similar to before) 

 
∏ (16−2∗𝑖

2 )𝑆
𝑖=6

(𝑆−5)!
 options.    
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JA4. Putting together the above, the results for 4 through 7 sons are therefore: 

a. 𝑃𝐽𝑎𝑐𝑜𝑏(4 𝑠𝑜𝑛𝑠|𝐴) =  
14

(8
2)∗(4

2)
∗ 𝑁−3 

b. 𝑃𝐽𝑎𝑐𝑜𝑏(5 𝑠𝑜𝑛𝑠|𝐴) =  
42

(8
2)∗(5

2)
∗ 𝑁−3 

c. 𝑃𝐽𝑎𝑐𝑜𝑏(6 𝑠𝑜𝑛𝑠|𝐴) =  
42

(8
2)∗(6

2)
∗ 3 ∗ 𝑁−3 

d. 𝑃𝐽𝑎𝑐𝑜𝑏(7 𝑠𝑜𝑛𝑠|𝐴) =  
56

(8
2)∗(7

2)
∗ 4 ∗ 𝑁−3 

JA5. For greater than 7 sons, we will proceed by induction similarly to JN5.   

a. The derivation uses the following notation: 

i. 𝑄𝐽(𝑆|𝐴) ≡  the number of combinations of S sons, consistent with Chart 16 and 

with further ancestor generations (as required for naming the sons) consisting of 

unknown ancestors. 

ii. 𝑄𝐽(𝑆|𝐴′) ≡  the number of combinations of S sons, consistent with Chart 16 and 

with further ancestor generations (as required for naming the sons) consisting of 

unknown ancestors, except assuming Jacob’s only known son is Meyer-Nuta. 

iii. 𝑇𝐽(𝑆|𝐴) ≡ the number of combinations of S sons, consistent with the known 

information about Jacob’s ancestors (only) in Chart 16 and with further ancestor 

generations (as required for naming the sons) consisting of unknown ancestors. 

iv.  𝐺𝑒𝑛𝐽(𝑖) ≡ the number of males in ancestor generation 𝑖. 

v. 𝛽𝐽(𝑔) ≡ ∑ [𝐺𝑒𝑛𝐽(𝑖)/2]
𝑔
𝑖=1  where the notation [] denotes the rounding-up of 

fractions.21 

b. The inductive assumptions for 𝑆 ≥ 7 and 𝛽𝐽(𝑔) < 𝑆 ≤ 𝛽𝐽(𝑔 + 1) , are: 

i. 𝑄𝐽(𝑆|𝐴) =  336 ∗ (𝑆 − 3) ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+1)+1−𝑖)

2
) ∗𝑆

𝑖=𝛽𝐽(𝑔)+1

𝑁2∗𝛽𝐽(𝑔+1)−6  

ii. 𝑄𝐽(𝑆|𝐴′) =  168 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+1)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔)+1  ∗

𝑁2∗𝛽𝐽(𝑔+1)−3 

iii. 𝑇𝐽(𝑆|𝐴) = 6 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=4 ∏ (2∗(𝛽𝐽(𝑔+1)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+1)−3𝑆

𝑖=𝛽𝐽(𝑔)+1  

c. The initial step of the inductive proof will be 𝑆 = 7.  Compare the values above, 

for 𝑆 = 7, with the values from JA1 through JA3.  The inductive proofs follow.   

d. Consider 𝛽𝐽(𝑔 + 1) < 𝑆 ≤ 𝛽𝐽(𝑔 + 2).  Partition the cases into those where Nachman-

Wulf is named after one of the first 𝑔 + 1 generations, and those where Nachman-

Wulf is named after generation 𝑔 + 2. 

i. If he was named after one of the first 𝑔 + 1 generations, then the first 𝛽𝐽(𝑔 + 1) 

sons are named as in the calculation of 𝑄𝐽(𝑆|𝐴) for 𝛽𝐽(𝑔) < 𝑆 ≤ 𝛽𝐽(𝑔 + 1) and 

the later sons are named after generation 𝑔 + 2.  The number of ways those 

later sons can be named are 
(𝑆− 𝛽𝐽(𝑔+1))!∗∏ (

2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖= 𝛽𝐽(𝑔+1)+1

(𝑆− 𝛽𝐽(𝑔+1) )!
∗

𝑁2∗( 𝛽𝐽(𝑔+2)− 𝛽𝐽(𝑔+1)).  The total contribution from this partition is therefore 

                                                           
21 As an example,  [

3

2
] = 2.  We use this here because in generation 2, there are only 3 ancestors whose names can 

be used for naming the sons of Jacob, and therefore one son has a name-pair, and the other has a single name. 
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𝑄𝐽( 𝛽𝐽(𝑔 + 1)|𝐴) ∗
(𝑆− 𝛽𝐽(𝑔+1))!∗∏ (

2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖= 𝛽𝐽(𝑔+1)+1

(𝑆− 𝛽𝐽(𝑔+1))!
∗

𝑁2∗( 𝛽𝐽(𝑔+2)− 𝛽𝐽(𝑔+1)) = 336 ∗ ( 𝛽𝐽(𝑔 + 1) − 3) ∗ ∏ (16−2∗𝑖
2

) ∗7
𝑖=5

… ∗ ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+2)−6𝑆

𝑖=𝛽𝐽(𝑔+1)+1 .                         

ii. If Nachman-Wulf was named after an ancestor in generation 𝑔 + 2 then the first 

 𝛽𝐽(𝑔 + 1) sons are named as in the calculation of 𝑄𝐽(𝑆|𝐴′) for 𝛽𝐽(𝑔) < 𝑆 ≤

𝛽𝐽(𝑔 + 1). In generation 𝑔 + 2, two ancestors are named Nachman and Wulf, 

and this can happen in 2 ∗ (𝐺𝑒𝑛𝐽(𝑔+2)

2
) ∗ 𝑁2∗(𝛽𝐽(𝑔+2)−𝛽𝐽(𝑔+1)−1) ways.  The sons 

beyond number 𝛽𝐽(𝑔 + 1) (in other words, sons who are younger than the 

oldest ≥sons) are named after generation 𝑔 + 2, but one of them is named after 

Nachman and Wulf.  The number of such combinations is (𝑆 − 𝛽𝐽(𝑔 + 1))! ∗

∏ (
2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+2

(𝑆−𝛽𝐽(𝑔+1)−1)!
 where I will continue to follow the convention that this 

term equals 1 if 𝑆 = 𝛽𝐽(𝑔 + 1) + 1.  So the total contribution from this partition 

is  𝑄𝐽( 𝛽𝐽(𝑔 + 1)|𝐴′) ∗ 2 ∗ (𝐺𝑒𝑛𝐽(𝑔+2)

2
) ∗ (𝑆 − 𝛽𝐽(𝑔 + 1)) ∗

∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+2 ∗ 𝑁2∗(𝛽𝐽(𝑔+2)−𝛽𝐽(𝑔+1)−1) = 168 ∗ 2 ∗ (𝑆 − 

𝛽𝐽(𝑔 + 1)) ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+1 ∗ 𝑁2∗𝛽𝐽(𝑔+2)−6. 

e. For 𝛽𝐽(𝑔 + 1) < 𝑆 ≤ 𝛽𝐽(𝑔 + 2), the calculation of 𝑄𝐽(𝑆|𝐴′) is straightforward.  The 

total of combinations is 𝑄𝐽(𝛽𝐽(𝑔 + 1)|𝐴′) ∗ ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+1 ∗

𝑁
2∗(𝛽𝐽(𝑔+2)−𝛽𝐽(𝑔+1))

= 168 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗𝑆

𝑖=𝛽𝐽(𝑔+1)+1

𝑁2∗𝛽𝐽(𝑔+2)−3. 

f. Again, consider 𝛽𝐽(𝑔 + 1) < 𝑆 ≤ 𝛽𝐽(𝑔 + 2).  The total of possible combinations 

consistent with ancestors, is 𝑇𝐽(𝛽𝐽(𝑔 + 1)|𝐴) ∗ ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+1 ∗

𝑁
2∗(𝛽𝐽(𝑔+2)−𝛽𝐽(𝑔+1))

= 6 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=4 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗𝑆

𝑖=𝛽𝐽(𝑔+1)+1

𝑁2∗𝛽𝐽(𝑔+2)−3. 

g. Finally, putting this all together, we obtain for 𝛽𝐽(𝑔 + 1) < 𝑆 ≤ 𝛽𝐽(𝑔 + 2), the proof 

of the induction step: 

𝑄𝐽(𝑆|𝐴) = (336 ∗ ( 𝛽𝐽(𝑔 + 1) − 3) + 168 ∗ 2 ∗ (𝑆 − 𝛽𝐽(𝑔 + 1))) ∏ (16−2∗𝑖
2

) ∗7
𝑖=5

… ∗ ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+2)−6𝑆

𝑖=𝛽𝐽(𝑔+1)+1  

= 336 ∗ (𝑆 − 3) ∗ ∏ (
16 − 2 ∗ 𝑖

2
) ∗ … ∗

7

𝑖=5

∏ (
2 ∗ (𝛽𝐽(𝑔 + 2) + 1 − 𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+2)−6

𝑆

𝑖=𝛽𝐽(𝑔+1)+1

 

 

𝑄𝐽(𝑆|𝐴′) =  168 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=5 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
)𝑆

𝑖=𝛽𝐽(𝑔+1)+1  ∗ 𝑁2∗𝛽𝐽(𝑔+2)−3 
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𝑇𝐽(𝑆|𝐴) = 6 ∗ ∏ (16−2∗𝑖
2

) ∗ … ∗7
𝑖=4 ∏ (2∗(𝛽𝐽(𝑔+2)+1−𝑖)

2
) ∗ 𝑁2∗𝛽𝐽(𝑔+2)−3𝑆

𝑖=𝛽𝐽(𝑔+1)+1   

h. We now can use the inductive assumptions above (and remembering the selection 

factor (𝑆
2
)), to derive the probability equation for 𝑆 > 7. 

 

𝑃𝐽𝑎𝑐𝑜𝑏(𝑆 𝑠𝑜𝑛𝑠|𝐴) =
𝑄𝐽(𝑆|𝐴)

𝑇𝐽(𝑆|𝐴)
=

336 ∗ (𝑆 − 3)

6 ∗ (8
2
) ∗ (𝑆

2
)

∗ 𝑁−3 

 

JA6. The final result for the alternative hypothesis is then 

𝑃("𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠"|𝐻𝐴
𝐽𝐷

) =  ∑  𝑃𝐽𝑎𝑐𝑜𝑏(𝑆 𝑠𝑜𝑛𝑠|𝐴) ∗ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁, 5)∞
𝑆=4 =   0.17 ∗ 𝑁−3 (49) 

Again, we can apply the Bayes equation (equation (1)).  

𝑃(𝐻∅
𝐽𝐷

|"𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠") =
𝑃(𝐻∅

𝐽𝐷
)∗𝑃("𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠"|𝐻∅

𝐽𝐷
)  

 𝑃(𝐻∅
𝐽𝐷

)∗𝑃("𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠"|𝐻∅
𝐽𝐷

)+𝑃(𝐻𝐴
𝐽𝐷

)∗ 𝑃("𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠"|𝐻𝐴
𝐽𝐷

)
   

Substitute the values in equations from (43), (44), (48) and  (49) 

𝑃(𝐻∅
𝐽𝐷

|"𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠") =
0.018

0.018+
0.034

𝑁

≈ 1.0  (50) 

The interpretation of this result is straightforward:  Since one of Jacob’s sons was named Nuta-Meyer, 

and since the null hypothesis has one of the great-grandfathers named Meyer, then the above result 

essentially tells us that, in the alternate case where we don’t know of any ancestors named Meyer, it 

would have been ‘too much of a coincidence’ for Jacob to have given the name Meyer to one of his two 

known sons.  How much of a coincidence?  That depends on the value of 𝑁.  From examining the 

references footnote 17, it would be reasonable to assume that 𝑁 is on the order of about 100 and 

therefore that it would be extremely unlikely for an unknown ancestor (through generation 3) to 

randomly be named Meyer.   

Now consider the situation where Meyer isn’t part of the null hypothesis – in other words, assume as in 

Chart 15 that Aron is the father of Jonas, but do not assume that Meyer is the father-in-law of Aron.  We 

can follow the kind of analysis done above to obtain the following: 

𝑃𝐽𝑎𝑐𝑜𝑏(4 𝑠𝑜𝑛𝑠|∅ − 𝑀𝑒𝑦𝑒𝑟) =  
14

3 ∗ (8
2
) ∗ (4

2
)

∗ 𝑁−3 

𝑃𝐽𝑎𝑐𝑜𝑏(5 𝑠𝑜𝑛𝑠|∅ − 𝑀𝑒𝑦𝑒𝑟) =  
14

3 ∗ (8
2
) ∗ (5

2
)

∗ 8 ∗ 𝑁−3 

𝑃𝐽𝑎𝑐𝑜𝑏(6 𝑠𝑜𝑛𝑠|∅ − 𝑀𝑒𝑦𝑒𝑟) =  
14

3 ∗ (8
2
) ∗ (6

2
)

∗ 21 ∗ 𝑁−3 

𝑃𝐽𝑎𝑐𝑜𝑏(7 𝑠𝑜𝑛𝑠|∅ − 𝑀𝑒𝑦𝑒𝑟) =  
14

3 ∗ (8
2
) ∗ (7

2
)

∗ 40 ∗ 𝑁−3 
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𝑃𝐽𝑎𝑐𝑜𝑏(𝑆 > 7 𝑠𝑜𝑛𝑠|∅ − 𝑀𝑒𝑦𝑒𝑟) =  
14

3∗(8
2)∗(𝑆

2)
∗ 4 ∗ (3 ∗ 𝑆 − 11) ∗ 𝑁−3  

From these equations, we obtain 

𝑃("𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠"|𝐻∅−𝑀𝑒𝑦𝑒𝑟
𝐽𝐷

) =  ∑  𝑃𝐽𝑎𝑐𝑜𝑏(𝑆 𝑠𝑜𝑛𝑠|∅ − 𝑀𝑒𝑦𝑒𝑟) ∗ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑁, 5)∞
𝑆=4 =   0.14 ∗ 𝑁−3  (51) 

Then applying Bayes theorem, and substituting from (43), (44), (49) and (51) 

𝑃(𝐻∅−𝑀𝑒𝑦𝑒𝑟
𝐽𝐷

|"𝐽𝑎𝑐𝑜𝑏 𝑠𝑜𝑛𝑠") =
0.11

0.11+0.03
= 0.76  (52) 

The results above are summarized in the following table: 

Table 2 – Sons of Jacob 

Differences from Chart 15 and Chart 16 𝒑∅ 𝒑𝑨 𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference 𝑝∅ = 0.023 ∗ 𝑁−2   𝑝𝐴 = 0.17 ∗ 𝑁−3 0.96 if N=50 

Null hypothesis doesn’t include Meyer 𝑝∅ = 0.14 ∗ 𝑁−3 𝑝𝐴 = 0.17 ∗ 𝑁−3 0.76 

 

Alternative assumptions about double-names 

In the analysis of Jacob’s sons, we relied heavily on assumption  J1.  This assumption is rather weak in 

several respects.  To begin with, there are many Jewish records showing double names where the first 

name in the pair corresponds to an ancestor from a different generation than the second name in the 

pair.   In addition, there are many records – including in JD’s family tree – where some sons have double 

names and some sons appear to have single names.  Moreover, even where sons appear to have single 

names, subsequent discoveries may reveal that the sons actually had double names but were most 

often known by only one of the two names.  Needless to say, the general situation appears to be 

unmanageably complicated.  Still, if a son has the name Nachman-Wulf, it seems reasonable to infer 

that he had ancestors with the names Nachman and Wulf and therefore we need to try and assign some 

probability to this.  The above analysis was the result of such an attempt. 

Here is an approach based on different assumptions which hopefully are reasonably realistic,22  but 

which are computationally more tractable than the assumptions used above.  If none of the sons are 

known to have double names, then we’ll assume that all sons have single names.  However, if any of the 

known sons have double names, we’ll assume they all do (however, in some of the situations examined 

later, there will be times when we explicitly treat a double-name as a singular event where we assume 

for example, that the son was named after an ancestor with the same double name). This is the 

situation analyzed below. 

D1. Assumptions: Even though some of the known sons might only be known by one of their two 

names, we will assume that they have second names which are unknown.    

1. If there are 𝑆 sons, then there are 2 ∗ 𝑆 ancestors after whom those sons are named.  

We will assume that the naming rules for each of those 2 ∗ 𝑆 names, to be the same 

rules (GA1 through GA4GA6) we would use if there were 2 ∗ 𝑆 sons each with a single 

name.  

                                                           
22 What ultimately needs to be examined, is how sensitive to the assumptions the conclusions are. 
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2. Recall that the above naming rules will result in chronologically ordered sets of names 

for the sons.  Since these are double-names, we will adopt the following chronological 

rule: a correct chronologically-ordered set of double names is one in which the first 

names of the pairs are in the same chronological order as they were amongst the 2 ∗ 𝑆 

names.  

3. All correct chronologically-ordered pairs are equally likely to occur.23 

4. The random selection rule GA5 can be applied. 

D2. Other than for points below, the analysis of probabilities follows that which leads to Equation 

(39).  Recall that in computing the probabilities of Equation (39), we arrived at an intermediate 

step where we enumerated the ways in which 𝑆 sons could be named in chronological order.  

For the case of double-names, that enumeration counts the ways in which 2 ∗ 𝑆 names can be 

assigned “in chronological order” to the 𝑆 sons.  However, following D1.2 and D1.3, only some 

of those pairings will be regarded as “correct chronological order”.   

1. Start by considering the total, 𝑇, of configurations of 𝑆 sons consistent with the known 

ancestors.  There are 2 ∗ 𝑆 names (𝑉1, 𝑉2, 𝑉3, … , 𝑉2∗𝑆).  𝑉1 can be paired with any of the 

names that follow, so there are 2 ∗ 𝑆 − 1 such pairings.  Let 𝑉𝑎 be the first (in numerical 

order) name not already assigned to the first pair.  Then 𝑉𝑎 can be paired with any of 

the 2 ∗ 𝑆 − 3 remaining names that follow.  This method of pairing then continues until 

there are no names left.  The total number of pairs is24  

𝑇𝐷(𝑆) =  (2 ∗ 𝑆 − 1) ∗ (2 ∗ 𝑆 − 3) ∗ … ∗ 1 =
(2∗𝑆)!

𝑆!∗2𝑆   (53) 

2.  Next, consider the total, 𝑄, of configurations of 𝑆 sons consistent with the known 

ancestors and the known sons.  Again, designate the sons by the set (𝑉1, 𝑉2, 𝑉3, … , 𝑉2∗𝑆). 

Let 𝐾𝑠 be the number of known sons where we know only one of their two names (recall 

that in this analysis we are assuming all sons have double names, even if they are known 

by only one of their names).  Then 𝐾𝐷 = 𝐾 − 𝐾𝑠 is the number of known sons where we 

know both of their two names.  Let 𝑄𝐷(𝑆, 𝐾𝐷 , 𝐾𝑆) be the number of correct pairs that 

can be constructed out of the 2 ∗ 𝑆 names. (Note that the total number, 𝑇, of pairs 

                                                           
23 This assumption seems flawed, but appears to greatly simplify the calculations.  As an example of the 

flaw, consider a family with 5 sons, each with double-names 𝑉𝑖 − 𝑉𝑗, where the 𝑉𝑖 are in chronological 

order.  Here are two possible examples. 

 (𝑉1 − 𝑉2, 𝑉3 − 𝑉4, 𝑉5 − 𝑉6, 𝑉7 − 𝑉8, 𝑉9 − 𝑉10) 

 (𝑉1 − 𝑉6, 𝑉2 − 𝑉7, 𝑉3 − 𝑉8, 𝑉4 − 𝑉9, 𝑉5 − 𝑉10) 

The first example seems reasonable.  The first son is born and since the family doesn’t know if other 
sons will be born, they give a double name that covers the ‘most important’ ancestors (generally the 
most recent ancestors).  This situation is similar to the one considered earlier when analyzing the sons of 
Jacob.  In the second example, the first son is named after an ‘important’ ancestor and is also named 
after a ‘less important’ (i.e., earlier) ancestor.  If the family were confident that there would be other 
sons, then that might be all right, but how could they be that confident?   
24 The equality can be found in (Abramowitz & Stegun, 1964) and can be deduced by noticing the following:  
(2 ∗ 𝑆) ∗ (2 ∗ 𝑆 − 2) ∗ (2 ∗ 𝑆 − 4) ∗ … ∗ 2 = 2 ∗ 𝑆 ∗ 2 ∗ (𝑆 − 1) ∗ 2 ∗ (𝑆 − 2) … = 2𝑆 ∗ 𝑆!.  If we divide (2 ∗ 𝑆)! by 
(2 ∗ 𝑆) ∗ (2 ∗ 𝑆 − 2) ∗ …, we are left with (2 ∗ 𝑆 − 1) ∗ (2 ∗ 𝑆 − 3) ∗ … 
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computed above in part (1) is 𝑄𝐷(𝑆, 0,0). )  When counting the number of correctly 

ordered pairs 𝑉𝑖 − 𝑉𝑗, we exclude the pairs corresponding to the 𝐾𝐷 known double-

names.  That would leave us with the total number of ‘potentially’ correct pairs 

as 𝑄𝐷
̅̅ ̅̅ (𝑆, 𝐾𝐷) =

(2∗(𝑆−𝐾𝐷))!

(𝑆−𝐾𝐷)!∗2(𝑆−𝐾𝐷).  However, that needs to be adjusted by excluding all 

pairs from amongst the 𝐾𝑆 names, since we know that those names cannot be paired 

with one another.  Suppose that 𝐾𝑆 = 2.  We would need to adjust   𝑄𝐷
̅̅ ̅̅  by subtracting 

all correct pairs which include the pair that consists of the two single names, 

so  𝑄𝐷(𝑆, 𝐾𝐷 , 2) = 𝑄𝐷
̅̅ ̅̅ (𝑆, 𝐾𝐷) − 𝑄𝐷

̅̅ ̅̅ (𝑆 − 2, 𝐾𝐷).  What about if 𝐾𝑆 = 3? There are(3
2
) 

ways of selecting a pair from the three single names.  In each case, one of the names is 

left over so no further pairs can be created from those names.  The result is therefore 

𝑄𝐷(𝑆, 𝐾𝐷, 3) = 𝑄𝐷
̅̅ ̅̅ (𝑆, 𝐾𝐷) − 𝑄𝐷

̅̅ ̅̅ (𝑆 − 2, 𝐾𝐷) ∗ (3
2
).    For 𝐾𝑆 = 4, there are (4

2
) ways of 

selecting the ‘first’ pair that can be constructed from the 4 single names.  It is instructive 

to look at an example.  Suppose the 4 names are (𝑉1, 𝑉2, 𝑉3, 𝑉4) and that for each of the 

(4
2
) ways of selecting the first pair, we subtract all collections of pairs which include that 

first pair.  One of the ways of choosing the first pair is 𝑉1 − 𝑉2 so we would subtract all 

collections of pairs which include 𝑉1 − 𝑉2.  Another way of choosing the first pair is 𝑉3 −

𝑉4 so we would also subtract all collections of pairs which include 𝑉3 − 𝑉4.  But this 

would result in over-subtraction, since that collection would also include – amongst 

others – the pair 𝑉1 − 𝑉2 which was already subtracted.  Therefore, we need to add 

back all collections which have two pairs from (𝑉1, 𝑉2, 𝑉3, 𝑉4). The number of ways of 

picking two pairs without repetition, is  
(4

2)∗(2
2)

2!
.  So altogether the result for 𝐾𝑆 = 4 is 

𝑄𝐷(𝑆, 𝐾𝐷, 4) = 𝑄𝐷
̅̅ ̅̅ (𝑆, 𝐾𝐷) − 𝑄𝐷

̅̅ ̅̅ (𝑆 − 2, 𝐾𝐷) ∗ (4
2
) + 𝑄𝐷

̅̅ ̅̅ (𝑆 − 4, 𝐾𝐷) ∗
(4

2)∗(2
2)

2!
.  This can be 

generalized. 

𝑄𝐷(𝑆, 𝐾𝐷, 2 ∗ 𝑀) = 𝑄𝐷
̅̅ ̅̅ (𝑆, 𝐾𝐷) + ∑ (−1)𝑘𝑄𝐷

̅̅ ̅̅ (𝑆 − 2 ∗ 𝑘, 𝐾𝐷) ∗
(2∗𝑀)!

2𝑘∗𝑘!∗(2∗𝑀−2∗𝑘)!
𝑀
𝑘=1   (54) 

𝑄𝐷(𝑆, 𝐾𝐷, 2 ∗ 𝑀 + 1) = 𝑄𝐷
̅̅ ̅̅ (𝑆, 𝐾𝐷) + ∑ (−1)𝑘𝑄𝐷

̅̅ ̅̅ (𝑆 − 2 ∗ 𝑘, 𝐾𝐷) ∗
(2∗𝑀+1)!

2𝑘∗𝑘!∗(2∗𝑀+1−2∗𝑘)!
𝑀
𝑘=1  (55) 

 

3. We are now ready to calculate the probability of selecting known double-named sons 

consistent with known information about ancestors, where 𝐾𝑆  of the known sons are 

known by one name, and 𝐾𝐷 of the known sons are known by two names.  We refer to 

equations (39), (53) 

4.  for definitions, and we note that the selection factor should be (𝑆
2
) rather than (2∗𝑆

2
). 

 

𝑃3−𝑛𝑔
𝐺𝑒𝑛 (𝐾𝐷 + 𝐾𝑆, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), … , 𝐺𝑒𝑛(𝑛𝑔), 𝐾𝑆. 𝐾𝐷) ≡ 

𝑃𝑛𝑔
𝐺𝑒𝑛( 2 ∗ 𝐾𝐷 + 𝐾𝑆, 2 ∗ 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), … , 𝐺𝑒𝑛(𝑛𝑔)) ∗  

𝑄𝐷(𝑆,𝐾𝐷,𝐾𝑆)

𝑇𝐷(𝑆)
∗

(2∗𝑆
2 )

(𝑆
2)

  (56) 

As for equations (37) and (42) define 𝑃3𝑇𝑟𝑒𝑒
𝐺𝑒𝑛−𝐷 as 

𝑃𝑇𝑟𝑒𝑒
𝐺𝑒𝑛−𝐷(𝑚𝑒𝑎𝑛, 𝐾𝐷 + 𝐾𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), 𝐺𝑒𝑛(2), 𝐺𝑒𝑛(3), 𝐾𝑆. 𝐾𝐷) ≡ 
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lim
𝑛𝑔→∞

(∑  𝑃𝑛𝑔−𝐷
𝐺𝑒𝑛 (𝐾𝐷 + 𝐾𝑆, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 𝐺𝑒𝑛(1), … , 𝐺𝑒𝑛(𝑛𝑔), 𝐾𝑆. 𝐾𝐷) ∗ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑆, 𝑚𝑒𝑎𝑛))∞

𝑆=1       

                           (57) 

We can apply this equation to the analysis of Jacob’s sons, and compare those results to Table 2. 

Table 2a – Sons of Jacob, analyzed using assumptions D1 

Differences from Chart 15 and Chart 16 𝒑∅ 𝒑𝑨 𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference 𝑝∅ = 0.0021 ∗ 𝑁−2   𝑝𝐴 = 0.043 ∗ 𝑁−3 0.91 if N=50 

Null hypothesis doesn’t include Meyer 𝑝∅ = 0.026 ∗ 𝑁−3 𝑝𝐴 = 0.043 ∗ 𝑁−3 0.71 

 

Table 2 and Table 2a are in reasonable agreement for the Bayes probabilities, which ultimately is what we 

care most about.  However, the values of 𝑝∅ and 𝑝𝐴 in Table 2a are both an order of magnitude smaller 

than in Table 2.  That would indicate the possibility of significant differences between predictions based 

on assumptions J1 and D1. 

The other single-spouse children of JD  
From the family tree of JD, we note that following children of JD are assumed – based on existing 

records – to have had only one spouse: 

 Daughter and Jacob-Lipman 

 Fajga and Lewek 

 Eyzyk and Hudes 

 Tanchum and wife 

 Mosze and wife 

 Naftali-Hersz and wife 

For each of those couples, we make the following assumptions, to be added to general assumptions and 

other information used previously about Jonas and his wife. 

JS1. The fathers died before the birth of their first-born son, the grandfathers died before the 

birth of the third-born son, and the great-grandfathers died before the birth of the seventh-

born son.    

JS2. The couple had 25 child-bearing years. 

Wife of Jacob-Lipman 

Null hypothesis 𝐻∅
𝐽𝐷: Ancestors of Jacob-Lipman and wife 

𝑋3 + wife 𝑋4 + wife 𝑋5 + wife 𝑋6 + wife Nuta + wife  Meyer + wife 𝑋7 + wife 𝑋8 + wife 

𝑋1 wife of 𝑋1 𝑋2 wife of 𝑋2 Aron wife of Aron Jacob wife of Jacob  

 Haim  wife of Haim Jonas  Dwojra  

   Jacob-Lipman wife    

Chart 17 

 

Sons 

Jonas Israel 
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Alternative hypothesis 𝐻𝐴
𝐽𝐷

: Ancestors of Jacob-Lipman and wife 

𝑋4 + wife 𝑋5 + wife 𝑋6 + wife 𝑋7 + wife Nuta + wife  𝑋8 + wife 𝑋9 + wife 𝑋10 + wife 

𝑋1 wife of 𝑋1 𝑋2 wife of 𝑋2 𝑋3 wife of 𝑋3 Jacob wife of Jacob  

 Haim  wife of Haim Jonas  Dwojra  

   Jacob-Lipman wife    

Chart 18 

Although this situation is very similar to the one assumed in the derivation of Equation (36), it differs in 

one important respect.  Since the father’s name is Jacob-Lipman, then (according to our assumptions) 

none of his sons would be named Jacob – which is also the name of Jonas’ father-in-law.  This is the 

situation considered in equation (39) with 𝐺𝑒𝑛(1) = 2, 𝐺𝑒𝑛(2) = 3, 𝐺𝑒𝑛(3) = 8.  Define 

𝑃′3(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3) ≡ 𝑃3
𝐺𝑒𝑛(𝐾, 𝑆, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 2,3,8) 

Also note that the 𝐺2 does not include the name Jacob.  Also define (see equation (42)) 

𝑃′
𝑇𝑟𝑒𝑒(𝑚𝑒𝑎𝑛, 𝐾, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3) ≡   𝑃𝑇𝑟𝑒𝑒

𝐺𝑒𝑛 (𝑚𝑒𝑎𝑛, 𝐾, 𝐺1, 𝐺2, 𝐺3, 𝑆1, 𝑆2, 𝑆3, 2,3,8)    (58) 

Now, using Equations  (38) and (58)  we can compute the various probabilities for Chart 17 and Chart 18 

as well as the variant where Meyer is not included in the null hypothesis. 

Table 3 – Sons of Jacob-Lipman 

Differences from 
Chart 17 and Chart 

18  Chart 14 

∅: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑∅ = 𝑷′𝑻𝒓𝒆𝒆(∅) 

𝑨: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑𝑨 = 𝑷′𝑻𝒓𝒆𝒆(𝑨) 

𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference (5,2,2,1,2,1,0,0) 

𝑝∅ = 0.17 ∗ 𝑁−1 
(5,2,2,0,1,1,0,0) 

𝑝𝐴 = 0.24 ∗ 𝑁−1 
0.73 

Null hypothesis 
doesn’t include 

Meyer 

(5,2,2,1,1,1,0,0) 
𝑝∅ = 0.17 ∗ 𝑁−1 

(5,2,2,0,1,1,0,0) 
𝑝𝐴 = 0.24 ∗ 𝑁−1 

0.74 

 

Fajga 

Null hypothesis 𝐻∅
𝐽𝐷: Ancestors of Lewek and Fajga 

𝑋3 + wife 𝑋4 + wife 𝑋5 + wife 𝑋6 + wife Nuta + wife  Meyer + wife 𝑋7 + wife 𝑋8 + wife 

𝑋1 wife of 𝑋1 𝑋2 wife of 𝑋2 Aron wife of Aron Jacob wife of Jacob  

 Jacob  wife of Jacob Jonas  Dwojra  

   Lewek Fajga    

Chart 19 

 

Sons 

Jonas Jacob 

 

Alternative hypothesis 𝐻𝐴
𝐽𝐷: Ancestors of Lewek and Fajga 
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𝑋4 + wife 𝑋5 + wife 𝑋6 + wife 𝑋7 + wife Nuta + wife  𝑋8 + wife 𝑋9 + wife 𝑋10 + wife 

𝑋1 wife of 𝑋1 𝑋2 wife of 𝑋2 𝑋3 wife of 𝑋3 Jacob wife of Jacob  

 Jacob  wife of Jacob Jonas  Dwojra  

   Lewek Fajga    

Chart 20 

This situation is very similar to that of the family of Lipman-Jacob.  The first two sons would be named 

Jacob and Jonas, therefore none of the later sons would be named after Dwojra’s father Jacob.  We can 

use Equations  (38) and (58)  to compute the various probabilities for Chart 19 and Chart 20 as well as 

the variant where Meyer is not included in the null hypothesis. 

Table 4 – Sons of Lewek 

Differences from 
Chart 19 and Chart 

20  

∅: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑∅ = 𝑷′𝑻𝒓𝒆𝒆(∅) 

𝑨: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑𝑨 = 𝑷′𝑻𝒓𝒆𝒆(𝑨) 

𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference (5,2,2,1,2,2,0,0) 

𝑝∅ = 0.20 
(5,2,2,0,1,2,0,0) 

𝑝𝐴 = 0.20 
0.80 

Null hypothesis 
doesn’t include 

Meyer 

(5,2,2,1,1,2,0,0) 
𝑝∅ = 0.20 

(5,2,2,0,1,2,0,0) 
𝑝𝐴 = 0.20 

0.80 

 

 

Eyzyk 

 

Null hypothesis 𝐻∅
𝐽𝐷

: Ancestors of Eyzyk and Hudes 

𝑋3 + wife 𝑋4 + wife 𝑋5 + wife 𝑋6 + wife Nuta + wife  Meyer + wife 𝑋7 + wife 𝑋8 + wife 

Aron wife of Aron Jacob wife of Jacob 𝑋1 wife of 𝑋1 𝑋2 wife of 𝑋2 

 Jonas  Dwojra Haim-Meyer  Wife of Haim-Meyer  

   Eyzyk Hudes    

Chart 21 

 

Sons 

Jonas Hersz Jacob Mathias Eliasz-Lewek 

 

Alternative hypothesis 𝐻𝐴
𝐽𝐷: Ancestors of Eyzyk and Hudes 

𝑋4 + wife 𝑋5 + wife 𝑋6 + wife 𝑋7 + wife Nuta + wife  𝑋8  + wife 𝑋9 + wife 𝑋10 + wife 

𝑋1 wife of 𝑋1 Jacob wife of Jacob 𝑋2 wife of 𝑋2 𝑋3 wife of 𝑋3 

 Jonas  Dwojra Haim-Meyer  Wife of Haim-Meyer  

   Eyzyk Hudes    

Chart 22 

 

Eyzyk’s family has a few features that differ from previous families whose probabilities have been 

calculated.   
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 One of the ancestors, Haim-Meyer, has a double name.  I will assume that there wouldn’t be 

two sons Haim and Meyer named after this one ancestor.   If a son is named after him, then that 

son will have the name Haim-Meyer, or Meyer or Haim.  Therefore, the ancestor Haim-Meyer 

can be treated in just the same way as any ancestor with a single name but the three possible 

sons’ names will need to be regarded as three independent possibilities. 

 If a son is named either Haim-Meyer or Meyer, after the ancestor in generation 1, then there 

won’t be another son named Meyer after the known ancestor in generation 3 (null hypothesis 

only).  In that case, we will treat the third generation as having only 7 males. 

 We will also consider separately the possibility that a son is named Haim after the ancestor in 

generation 1, in which case a later son might be named Meyer after the known ancestor in 

generation 3 (null hypothesis only). 

 The son Eliasz-Lewek will be either assumed to have been named after two ancestors Eliasz and 

Lewek, or will be assumed to have been named after a single ancestor Eliasz-Lewek.  In the first 

case, we will analyze the situation using assumptions of D1. 

Based on the above, we will compute the probabilities for the following cases. 

E1. A son named Haim – assign this event as having a probability of 1/3.  In this case, we will 

treat all generations 𝑔 as having the standard number of male ancestors –  2𝑔. 

E2. A son named Meyer or a son named Haim-Meyer – assign each of these events as having a 

probability of 1/3. The third generation will be treated as having 7 male ancestors. (Note 

that this applies only to the null hypothesis.) In the case of Haim-Meyer, we will treat this 

exactly as though it were a single, rather than double, name.  We can do this because we 

know that the son would be named after an ancestor with the name Haim-Meyer. 

E3. For each of the cases above, Eliasz-Lewek will be treated as a single name, named after an 

ancestor whose name was Eliasz-Lewek. 

E4. For each of the first two cases above, Eliasz-Lewek will be treated as a double name 

following assumptions of D1. 

Define 𝑝∅
𝐸(𝑥, 𝑦) to be the probability of the null hypothesis assuming assumptions 𝑥 and 𝑦 selected from 

assumptions E1 through E4.  Similarly define 𝑝𝐴
𝐸(𝑥, 𝑦) as the probability of the alternate hypothesis.  

Here are some examples using equation(39), where the null hypothesis has both Aron and Meyer 

included amongst ancestors as in Chart 21.   

𝑝∅
𝐸(𝐸1, 𝐸3) =  𝑃𝑇𝑟𝑒𝑒

𝐺𝑒𝑛 (5,5,2,2,2,1,1,0,2,4,8) = 0.058 ∗ 𝑁−3 (59) 

𝑝∅
𝐸(𝐸2, 𝐸3) =  𝑃𝑇𝑟𝑒𝑒

𝐺𝑒𝑛 (5,5,2,2,2,1,1,0,2,4,7) = 0.054 ∗ 𝑁−3 (60) 

𝑝∅
𝐸(𝐸1, 𝐸4) = 𝑃𝑇𝑟𝑒𝑒

𝐺𝑒𝑛−𝐷(5,5,2,2,2,1,1,0,2,4,8,4,1) = 0.27 ∗ 𝑁−3 (61) 

Cases E1 and E2 are combined, leading to (for instance) 

𝑝∅
𝐸(𝐸3) =

1

3
∗ 𝑝∅

𝐸(𝐸1, 𝐸3) +
2

3
∗ 𝑝∅

𝐸(𝐸2, 𝐸3) = .055 ∗ 𝑁−3 

Since 𝑝∅
𝐸(𝐸1, 𝐸3) has almost the same value as 𝑝∅

𝐸(𝐸2, 𝐸3), it doesn’t make much difference what 

probabilities we assign to cases E1 and E2, so long as they add up to 1.    
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We can now compute the various probabilities for Chart 21 and Chart 20Chart 22 as well as the variant 

where Meyer is not included in the null hypothesis. 

Table 5a – Sons of Eyzyk – case E3 (Eliasz-Lewek treated as single name) 
𝑨𝒓𝒈: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑, 𝑮𝒆𝒏𝟏, 𝑮𝒆𝒏𝟐, 𝑮𝒆𝒏𝟑) 

Differences from 
Chart 21 and Chart 

22  

𝒑∅(𝑬𝟏) ≡  𝑷𝑻𝒓𝒆𝒆
𝑮𝒆𝒏

(𝑨𝒓𝒈(∅, 𝑬𝟏 )) 
 

𝒑∅(𝑬𝟐) ≡  𝑷𝑻𝒓𝒆𝒆
𝑮𝒆𝒏

(𝑨𝒓𝒈(∅, 𝑬𝟐 )) 
 

𝒑∅ =
𝟏

𝟑
∗ 𝒑∅(𝑬𝟏) +

𝟐

𝟑
∗ 𝒑∅(𝑬𝟐)  

 

 𝒑
𝑨

(𝑬𝟏) ≡  𝑷𝑻𝒓𝒆𝒆
𝑮𝒆𝒏 (𝑨𝒓𝒈(𝑨, 𝑬𝟏 ))  

 

𝒑𝑨(𝑬𝟐) ≡  𝑷𝑻𝒓𝒆𝒆
𝑮𝒆𝒏

(𝑨𝒓𝒈(𝑨, 𝑬𝟐 )) 
 

𝒑𝑨 =
𝟏

𝟑
∗ 𝒑𝑨(𝑬𝟏) +

𝟐

𝟑
∗ 𝒑𝑨(𝑬𝟐)  

 

 

𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference 𝐴𝑟𝑔(∅, 𝐸1): (5,5,2,2,2,1,1,0,2,4,8,) 

𝑝∅(𝐸1) = 0.058 ∗ 𝑁−3 
𝐴𝑟𝑔(∅, 𝐸2): (5,5,2,2,2,1,1,0,2,4,7) 

𝑝∅(𝐸2) = 0.054 ∗ 𝑁−3 
 

𝑝∅ = 0.055 ∗ 𝑁−3 

𝐴𝑟𝑔(𝐴, 𝐸1): (5,5,2,1,1,1,1,0,2,4,8) 

𝑝𝐴(𝐸1) = 0.21 ∗ 𝑁−3 
𝐴𝑟𝑔(∅, 𝐸2): (5,5,2,1,1,1,1,0,2,4,8) 

𝑝𝐴(𝐸2) = 0.21 ∗ 𝑁−3 
 

𝑝∅ = 0.21 ∗ 𝑁−3 

0.51 

Null hypothesis 
doesn’t include 

Meyer 

𝐴𝑟𝑔(∅, 𝐸1): (5,5,2,2,1,1,1,0,2,4,8) 

𝑝∅(𝐸1) = 0.073 ∗ 𝑁−3 
𝐴𝑟𝑔(∅, 𝐸2): (5,5,2,2,1,1,1,0,2,4,8) 

𝑝∅(𝐸2) = 0.073 ∗ 𝑁−3 
 

𝑝∅ = 0.073 ∗ 𝑁−3 

𝐴𝑟𝑔(𝐴, 𝐸1): (5,5,2,1,1,1,1,0,2,4,8) 

𝑝𝐴(𝐸1) = 0.21 ∗ 𝑁−3 
𝐴𝑟𝑔(∅, 𝐸2): (5,5,2,1,1,1,1,0,2,4,8) 

𝑝𝐴(𝐸2) = 0.21 ∗ 𝑁−3 
 

𝑝∅ = 0.21 ∗ 𝑁−3 

0.58 

 

Table 5b – Sons of Eyzyk – case E3 (Eliasz-Lewek treated as double name) 
𝑨𝒓𝒈: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑, 𝑮𝒆𝒏𝟏, 𝑮𝒆𝒏𝟐, 𝑮𝒆𝒏𝟑, 𝑲𝑺, 𝑲𝑫) 

Differences from 
Chart 21 and Chart 

22  

𝒑∅(𝑬𝟏) ≡  𝑷𝑻𝒓𝒆𝒆
𝑮𝒆𝒏−𝑫(𝑨𝒓𝒈(∅, 𝑬𝟏 )) 

 
𝒑∅(𝑬𝟐) ≡  𝑷𝑻𝒓𝒆𝒆

𝑮𝒆𝒏−𝑫(𝑨𝒓𝒈(∅, 𝑬𝟐 )) 
 

𝒑∅ =
𝟏

𝟑
∗ 𝒑∅(𝑬𝟏) +

𝟐

𝟑
∗ 𝒑∅(𝑬𝟐)  

 

 𝒑𝑨(𝑬𝟏) ≡  𝑷𝑻𝒓𝒆𝒆
𝑮𝒆𝒏−𝑫(𝑨𝒓𝒈(𝑨, 𝑬𝟏 ))  

 
𝒑𝑨(𝑬𝟐) ≡  𝑷𝑻𝒓𝒆𝒆

𝑮𝒆𝒏−𝑫(𝑨𝒓𝒈(𝑨, 𝑬𝟐 )) 
 

𝒑𝑨 =
𝟏

𝟑
∗ 𝒑𝑨(𝑬𝟏) +

𝟐

𝟑
∗ 𝒑𝑨(𝑬𝟐)  

 
 

𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference 𝐴𝑟𝑔(∅, 𝐸1): (5,5,2,2,2,1,1,0,2,4,8,4,1) 

𝑝∅(𝐸1) = 0.27 ∗ 𝑁−3 
𝐴𝑟𝑔(∅, 𝐸2): (5,5,2,2,2,1,1,0,2,4,7,4,1) 

𝑝∅(𝐸2) = 0.24 ∗ 𝑁−3 
 

𝑝∅ = 0.25 ∗ 𝑁−3 

𝐴𝑟𝑔(𝐴, 𝐸1): (5,5,2,1,1,1,1,0,2,4,8,4,1) 

𝑝𝐴(𝐸1) = 0.91 ∗ 𝑁−3 
𝐴𝑟𝑔(𝐴, 𝐸2): (5,5,2,2,2,1,1,0,2,4,8,4,1) 

𝑝𝐴(𝐸2) = 0.91 ∗ 𝑁−3 
 

𝑝𝐴 = 0.91 ∗ 𝑁−3 

0.54 

Null hypothesis 
doesn’t include 

Meyer 

𝐴𝑟𝑔(∅, 𝐸1): (5,5,2,2,1,1,1,0,2,4,8,4,1) 

𝑝∅(𝐸1) = 0.44 ∗ 𝑁−3 
𝐴𝑟𝑔(∅, 𝐸2): (5,5,2,2,1,1,1,0,2,4,8,4,1) 

𝑝∅(𝐸2) = 0.44 ∗ 𝑁−3 
 

𝑝∅ = 0.44 ∗ 𝑁−3 

𝐴𝑟𝑔(𝐴, 𝐸1): (5,5,2,1,1,1,1,0,2,4,8,4,1) 

𝑝𝐴(𝐸1) = 0.91 ∗ 𝑁−3 
𝐴𝑟𝑔(𝐴, 𝐸2): (5,5,2,2,2,1,1,0,2,4,8,4,1) 

𝑝𝐴(𝐸2) = 0.91 ∗ 𝑁−3 
 

𝑝𝐴 = 0.91 ∗ 𝑁−3  

0.66 
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Tanchum (or his wife) 

Null hypothesis 𝐻∅
𝐽𝐷: Ancestors of Tanchum and wife 

Nuta + wife Meyer + wife  𝑋4 + wife 𝑋5 + wife 𝑋6 + wife 𝑋7 + wife  𝑋8 + wife 𝑋9 + wife 

Aron  wife of Aron Jacob  wife of Jacob  𝑋2 wife of 𝑋2 𝑋3 wife of 𝑋3 

 Jonas  Dwojra 𝑋1  wife of 𝑋1  

   Tanchum wife of Tanchum    

Chart 23 

 

Sons 

Abraham 

 

Alternative hypothesis 𝐻𝐴
𝐽𝐷

: Ancestors of Tanchum and wife 

Nuta + wife 𝑋5+ wife  𝑋6 + wife 𝑋7 + wife 𝑋8 + wife 𝑋9 + wife  𝑋10 + wife 𝑋11 + wife 

𝑋2 wife of 𝑋2 Jacob  wife of Jacob  𝑋3 wife of 𝑋3 𝑋4 wife of 𝑋4 

 Jonas  Dwojra 𝑋1  wife of 𝑋1  

   Tanchum wife of Tanchum    

Chart 24 

Note that the analysis of probabilities is independent of whether Tanchum is the son of JD, or whether 

his wife is the daughter of JD.  We can compute probabilities as before. 

Table 6 – Sons of Tanchum 

Differences from 
Chart 23  and  Chart 

24 

∅: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑∅ = 𝑷𝑻𝒓𝒆𝒆(∅) 

𝑨: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑𝑨 = 𝑷𝑻𝒓𝒆𝒆(𝑨) 

𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference (5,1,1,2,2,0,0,0) 

𝑝∅ = 0.13 ∗ 𝑁−1 
(5,1,1,1,1,0,0,0) 

𝑝𝐴 = 0.17 ∗ 𝑁−1 
0.76 

Null hypothesis 
doesn’t include 

Meyer 

(5,1,1,2,1,0,0,0) 
𝑝∅ = 0.14 ∗ 𝑁−1 

(5,1,1,1,1,0,0,0) 
𝑝𝐴 = 0.17 ∗ 𝑁−1 

0.77 

 

Hersz (or his wife) 

Null hypothesis 𝐻∅
𝐽𝐷: Ancestors of Hersz and wife 

Nuta + wife Meyer + wife  𝑋4 + wife 𝑋5 + wife 𝑋6 + wife 𝑋7 + wife  𝑋8 + wife 𝑋9 + wife 

Aron  wife of Aron Jacob  wife of Jacob  𝑋2 wife of 𝑋2 𝑋3 wife of 𝑋3 

 Jonas  Dwojra 𝑋1  wife of 𝑋1  

   Hersz wife of Hersz    

Chart 25 

 

Sons 

Szmuel 
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Alternative hypothesis 𝐻𝐴
𝐽𝐷

: Ancestors of Hersz and wife 

Nuta + wife 𝑋5+ wife  𝑋6 + wife 𝑋7 + wife 𝑋8 + wife 𝑋9 + wife  𝑋10 + wife 𝑋11 + wife 

𝑋2 wife of 𝑋2 Jacob  wife of Jacob  𝑋3 wife of 𝑋3 𝑋4 wife of 𝑋4 

 Jonas  Dwojra 𝑋1  wife of 𝑋1  

   Hersz wife of Hersz    

Chart 26 

Note that the analysis of probabilities is independent of whether Hersz is the son of JD, or whether his 

wife is the daughter of JD.  We can compute probabilities as before. The results are identical to those for 

Tanchum. 

Table 7 – Sons of Hersz 

Differences from  
Chart 25  and  Chart 

26 

∅: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑∅ = 𝑷𝑻𝒓𝒆𝒆(∅) 

𝑨: (𝑴, 𝑲, 𝑮𝟏, 𝑮𝟐, 𝑮𝟑, 𝑺𝟏, 𝑺𝟐, 𝑺𝟑) 
𝒑𝑨 = 𝑷𝑻𝒓𝒆𝒆(𝑨) 

𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference (5,1,1,2,2,0,0,0) 

𝑝∅ = 0.13 ∗ 𝑁−1 
(5,1,1,1,1,0,0,0) 

𝑝𝐴 = 0.17 ∗ 𝑁−1 
0.76 

Null hypothesis 
doesn’t include 

Meyer 

(5,1,1,2,1,0,0,0) 
𝑝∅ = 0.14 ∗ 𝑁−1 

(5,1,1,1,1,0,0,0) 
𝑝𝐴 = 0.17 ∗ 𝑁−1 

0.77 

 

Mosze (or his wife) 

Mosze did not have any known sons.  There is therefore no information whatsoever that can be derived 

from information about his sons.   We can formalize this by setting, for Mosze,  𝑝∅ = 𝑝𝐴 = 1 and 

therefore 𝑃𝐵𝑎𝑦𝑒𝑠(0.8, 𝑝∅, 𝑝𝐴) = 0.8. 

Sons of Abraham and his two wives 
From the family tree of JD, we see that Abraham had sons by two wives, Laja and Szajndel.  

Furthermore, his son Jonas was born after his son Leyzor since JD was still alive at the time of the birth 

of Leyzor.  These facts change the analysis considerably from what has been done previously in this 

paper. The following assumptions will be used. 

A1. Assumptions: 

1. Abraham and Laja had 20 child-bearing years together.  Abraham and Szajndel had 15 

child-bearing years together. 

2. Jonas was close to being Laja’s last son (note that JD died a year later), but all other sons 

are named in the standard order (the assumption being that all other grandparents, etc. 

all predeceased the birthdates of Laja’s other sons).   This assumption will be 

implemented by dividing Laja’s child-bearing years into period 𝑃(1) of 18 years prior to 

the death of JD and period 𝑃(2) of 2 years subsequent to the death of JD.  Jonas was 

born in that second period. 

3. Szajndel’s children were named in the standard order. 

4. Mosze-Chaim was the only one of Abraham’s known children with a double name 

(separately from information presented in this paper, there is a considerable amount of 
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information available about Chaskel with no evidence that he had a second name).  

We’ll assume that the name Chaim was either added on after Mosze recovered from an 

illness, or that Mosze-Chaim was named after an ancestor with the same name (i.e., 

we’ll treat Mosze-Chaim as a single name). 

 

 

Null hypothesis 𝐻∅
𝐽𝐷

: Ancestors of Abraham and wives 

𝑋4 𝑋5 𝑋6 𝑋7 Nuta Meyer 𝑋𝑌1 𝑋𝑌2 𝑋11 𝑋12 𝑋13 𝑋14 

𝑋2 w-𝑋2 𝑋3 w-𝑋3 Aron w-Aron Jacob w-Jacob 𝑋9 w-𝑋9 𝑋10 w-𝑋10 

 𝑋1  w-𝑋1  Jonas  Dwojra  𝑋8  w-𝑋8 

  Laja     Abraham    Szajndel  

Chart 27 
 

 

 

 

Alternate hypothesis 𝐻𝐴
𝐽𝐷

: Ancestors of Abraham and wives 

𝑋4 𝑋5 𝑋6 𝑋7 Nuta 𝑋𝑌2 𝑋𝑌3 𝑋𝑌4 𝑋11 𝑋12 𝑋13 𝑋14 

𝑋2 w-𝑋2 𝑋3 w-𝑋3 𝑋𝑌1 w-𝑋𝑌1 Jacob w-Jacob 𝑋9 w-𝑋9 𝑋10 w-𝑋10 

 𝑋1  w-𝑋1  Jonas  Dwojra  𝑋8  w-𝑋8 

  Laja     Abraham    Szajndel  

Chart 28 

A2. Compute  𝑇𝑛𝑔
𝐴 (𝑆𝐿(1), 𝑆𝐿(2), 𝑆𝑆), the total number of configurations, consistent with Chart 

27, of 𝑆𝐿(𝑖) sons of Laja during period 𝑃(𝑖) (see A1.2) and of 𝑆𝑆 sons of Szajndel.  The 

subscript 𝑛𝑔 denotes the number of ancestor-generations that are included in the analysis.   

1. For 𝑆𝐿(1)  = 1 , 𝑆𝐿(2)  = 0 Laja’s son must be named 𝑋1.  For  𝑆𝐿(1)  = 0 , 𝑆𝐿(2)  = 1  

his name could be Jonas or 𝑋1.  So there is one possible configuration of Laja’s sons in 

the first period and two possible configurations in the second period. We will use the 

notation introduced earlier of 𝐺𝑒𝑛1, 𝐺𝑒𝑛2, 𝐺𝑒𝑛3 to denote the number of relevant 

males in each ancestor-generation of Abraham and Szajndel.  By a relevant male, I mean 

a male ancestor for which a son may be named.  If Laja had exactly one son whose name 

was 𝑋1 then Szajndel could name one of her sons Jonas – so (𝐺𝑒𝑛1, 𝐺𝑒𝑛2, 𝐺𝑒𝑛3) =

(2,4,8).  On the other hand, if Laja had exactly one son named Jonas, then Szajndel 

couldn’t name one of her sons Jonas – so (𝐺𝑒𝑛1, 𝐺𝑒𝑛2, 𝐺𝑒𝑛3) = (1,4,8).  

Let     𝑇𝑆(2, 𝑆𝑆, 𝐺𝑒𝑛1, 𝐺𝑒𝑛2, 𝐺𝑒𝑛3) be the number of configurations of Szajndel’s 𝑆𝑆 sons 

consistent with a possible configuration of ancestors.  Then we get (noting as usual that 

there are 𝑁 possibilities for each unknown ancestor) 

 𝑇3
𝐴(1,0, 𝑆𝑆) = 𝑇𝑆(𝑆𝑆, 2, 4, 8) ∗ 𝑁16  (62) 

 𝑇3
𝐴(0,1, 𝑆𝑆) =  2 ∗ 𝑇𝑆(𝑆𝑆, 1, 4, 8) ∗ 𝑁16  (63) 

Sons of Abraham and Laja 

Leyzor Jonas 

 

Sons of Abraham and Szajndel 

Mosze-Chaim Chaskel 
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2.  For 𝑆𝐿(1)  = 2 , 𝑆𝐿(2)  = 0 one of Laja’s sons must be named 𝑋1 and the other must 

be named after one of the 4 grandfathers, and the naming can be in either order – so a 

total of 1 ∗ 4 ∗ 2.  However, we need to distinguish between grandfathers of Abraham 

and grandfathers of Laja.  So more precisely, there are 4 configurations that include a 

grandfather of Abraham, and 4 configurations that include a grandfather of Laja.  In the 

first case, we need to multiply by 𝑇𝑆(𝑆𝑆, 2, 3, 8) and in the second case we multiply by 

𝑇𝑆(𝑆𝑆, 2, 4, 8). 

𝑇3
𝐴(2,0, 𝑆𝑆) = (4 ∗ 𝑇𝑆(𝑆𝑆, 2, 3, 8) + 4 ∗ 𝑇𝑆(𝑆𝑆, 2, 4, 8)) ∗ 𝑁16  (64) 

3. For 𝑆𝐿(1)  = 1 , 𝑆𝐿(2)  = 1 one of Laja’s sons is named 𝑋1 and the other is named 

Jonas.   Exactly the same conclusion occurs when 𝑆𝐿(1)  = 0 , 𝑆𝐿(2)  = 2, except 

that 𝑋1and Jonas can be in either order. We have 

𝑇3
𝐴(1,1, 𝑆𝑆) = 𝑇𝑆(𝑆𝑆, 1, 4, 8) ∗ 𝑁16     (65) 

𝑇3
𝐴(0,2, 𝑆𝑆) = 2 ∗ 𝑇𝑆(𝑆𝑆, 1, 4, 8) ∗ 𝑁16   (66) 

4. For the more general cases, we introduce yet more notation25.  We set 

 𝑡𝑛𝑔 (𝑘, 𝑙, 𝐺1,𝐺2, 𝐺3, 𝑆(1), … , 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) to be 

the number of possible configurations consisting of 𝑘 sons who are named after a 

possible configuration of ancestors of Abraham and 𝑙 sons who are named after a 

possible configuration of ancestors of Laja, given 𝐺𝑒𝑛𝑌(𝑔) male ancestors of Abraham 

in generation 𝑔 and 𝐺𝑒𝑛𝑋(𝑔) male ancestors of Laja in generation 𝑔 – and furthermore 

consisting of 𝑆(𝑔) sons with names of known generation-𝑔 ancestors of Abraham, 𝐺1 

known 1st-generation ancestors of Abraham, 𝐺2 known 2nd-generation ancestors of 

Abraham and 𝐺3 known 3rd-generation ancestors of Abraham.  Here, when we refer to 

ancestors, we mean relevant male ancestors (ones for whom sons can be named).   We 

also define 𝛽𝑌(𝑔) ≡ ∑ 𝐺𝑒𝑛𝑌(𝑖) 
𝑔
𝑖=1 and 𝛽𝑋(𝑔) ≡ ∑ 𝐺𝑒𝑛𝑋(𝑖)𝑔

𝑖=1 . We also define 

𝛽𝑌(0) = 𝛽𝑋(0).  As usual, sons aren’t named after generation 𝑔 until previously born 

sons have been named after all males in generations prior to 𝑔 (regardless of whether 

those sons were named after Laja’s or Abraham’s ancestors).  Therefore 

 

               

 𝑡3(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), 𝐺𝑒𝑛𝑌(2), 𝐺𝑒𝑛𝑋(2), 𝐺𝑒𝑛𝑌(3), 𝐺𝑒𝑛𝑋(3)) = 

  ∏ (𝐺𝑒𝑛𝑌(𝑔)−𝐺(𝑔)
𝛼𝑌(𝑘,𝑔)−𝑆(𝑔)

) ∗ (𝐺𝑒𝑛𝑋(𝑔)

 𝛼𝑋(𝑙,𝑔)
) ∗ (𝐺(𝑔)

𝑆(𝑔)
) ∗ (𝛼𝑌(𝑘, 𝑔) + 𝛼𝑋(𝑙, 𝑔))!3

𝑔=1   where 

  

  (𝛼𝑌(𝑘, 1), 𝛼𝑌(𝑘, 2), 𝛼𝑌(𝑘, 3), 𝛼𝑋(𝑙, 1), 𝛼𝑋(𝑙, 2), 𝛼𝑋(𝑙, 3)) ≡   
       (𝑘, 0,0, 𝑙, 0,0) if  0 ≤ 𝑘 ≤ 𝛽𝑌(1) and 0 ≤ 𝑙 ≤ 𝛽𝑋(1), 

         (𝐺𝑒𝑛𝑌(1), 𝑘 − 𝛽𝑌(1), 0, 𝐺𝑒𝑛𝑋(1), 𝑙 − 𝛽𝑋(1), 0) if  𝛽𝑌(1) ≤ 𝑘 ≤ 𝛽𝑌(2) and 𝛽𝑋(1) ≤ 𝑙 ≤ 𝛽𝑋(2), 

         (𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑌(2), 𝑘 − 𝛽𝑌(2), 𝐺𝑒𝑛𝑋(1), 𝐺𝑒𝑛𝑋(2), 𝑙 − 𝛽𝑋(2)) if  𝛽𝑌(2) ≤ 𝑘 ≤ 𝛽𝑌(3) and 𝛽𝑋(2) ≤ 𝑙 ≤ 𝛽𝑋(3)  a 

  

                                                           
25 The notation chosen in this section on the sons of Abraham, assumes that for the entire analysis, we don’t 
change our assumptions about what is known of the sons of Abraham, nor do we change what we know about the 
first-generation ancestors of Abraham. 
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and 𝐺(𝑖) ≡ 0 for 𝑖 ≠ 1, 𝑖 ≠ 2, 𝑖 ≠ 3, 𝐺(1) ≡ 𝐺1, 𝐺(2) ≡ 𝐺2, 𝐺(3) ≡ 𝐺3         (67) 

 

Equation (67) can be simplified and easily generalized to 𝑡𝑔 as follows. The above 

definitions of 𝛼𝑌 and 𝛼𝑋 result, for each of the three sets of inequalities, in one of the 

following for each of two values of 𝑔: either (𝛼𝑌(𝑘1,𝑔), 𝛼𝑋(𝑙1, 𝑔)) = (0,0) or 

(𝛼𝑌(𝑘1,𝑔), 𝛼𝑋(𝑙1, 𝑔)) = (𝐺𝑒𝑛𝑌(𝑔), 𝐺𝑒𝑛𝑋(𝑔)).   In either case, (𝐺𝑒𝑛𝑌(𝑔)−𝐺(𝑔)
𝛼𝑌(𝑘,𝑔)−𝑆(𝑔)

) ∗

(𝐺𝑒𝑛𝑋(𝑔)

 𝛼𝑋(𝑙,𝑔)
) = 1 if (𝛼𝑌(𝑘1,𝑔), 𝑆(𝑔)) = (𝐺𝑒𝑛𝑌(𝑔), 𝐺(𝑔)) or if (𝛼𝑌(𝑘1,𝑔), 𝑆(𝑔) = (0,0))  

otherwise (𝐺𝑒𝑛𝑌(𝑔)−𝐺(𝑔)
𝛼𝑌(𝑘,𝑔)−𝑆(𝑔)

) ∗ (𝐺𝑒𝑛𝑋(𝑔)

 𝛼𝑋(𝑙,𝑔)
) = 0.  For the remaining value of 𝑔, we 

have 𝛼𝑌(𝑘1,𝑔) = 𝑘1 − 𝛽𝑌(𝑔 − 1) and 𝛼𝑋(𝑙1,𝑔) = 𝑙1 − 𝛽𝑋(𝑔 − 1). This generalizes to  

 

  𝑡𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), …  𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) = 

          (𝐺𝑒𝑛𝑌(𝑔𝑔)−𝐺(𝑔𝑔)
𝛼𝑌(𝑘,𝑔𝑔)−𝑆(𝑔𝑔)

) ∗ (𝐺𝑒𝑛𝑋(𝑔𝑔)

 𝛼𝑋(𝑙,𝑔𝑔)
) ∗ ∏  (𝐺𝑒𝑛𝑌(𝑔) + 𝐺𝑒𝑛𝑋(𝑔))!

𝑔𝑔−1
𝑔=1 ∗    

                          ∗ (𝐺(𝑔𝑔)

𝑆(𝑔𝑔)
) ∗ (𝛼𝑌(𝑘, 𝑔𝑔) + 𝛼𝑋(𝑙, 𝑔𝑔))!  

 

𝑔𝑔 is implicitly defined by  𝛽𝑌(𝑔𝑔 − 1) ≤ 𝑘 ≤ 𝛽𝑌(𝑔𝑔) and 𝛽𝑋(𝑔𝑔 − 1) ≤ 𝑙 ≤

𝛽𝑋(𝑔𝑔).   𝛼𝑌(𝑘,𝑔𝑔) = 𝑘 − 𝛽𝑌(𝑔𝑔 − 1), 𝛼𝑋(𝑙, 𝑔𝑔) = 𝑙 − 𝛽𝑋(𝑔𝑔 − 1) and if (𝑔𝑔 > 3,

𝑖 ≤ 𝑔𝑔) we have 𝛼𝑌(𝑘,𝑖) = 𝐺𝑒𝑛𝑌(𝑖), 𝛼𝑋(𝑙, 𝑖) = 𝐺𝑒𝑛𝑋(𝑖), 𝑆(𝑖) = 𝐺(𝑖).  𝑆(𝑖) = 0 if 𝑖 >

3.           (68) 

 

For values of 𝑘 and 𝑙 which don’t satisfy the set of lower and upper bounds above, the 

value of the function 𝑡() will be set to 0.  Also, note that when, for example, 𝑘 = 𝛽𝑌(𝑖), 

then that value of 𝑘 might appear on two of the lines above.  However, it is easy to 

verify that there is no inconsistency between the two lines.   

5.  In computing 𝑇𝑛𝑔
𝐴 (𝑆𝐿(1), 𝑆𝐿(2), 𝑆𝑆), the sequence of multiplicands is as follows: 

i. For period 1, compute 

𝑡𝑛𝑔( 𝑘1, 𝑙1, 0, 𝐺2, 𝐺3, 0, 𝑆(2), 𝑆(3), 0, 𝐺𝑒𝑛𝑋(1), 𝐺𝑒𝑛𝑌(2), 𝐺𝑒𝑛𝑋(2), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(3𝑛𝑔))  

for each value of  𝑘1 and 𝑙1 such that 𝑘1 + 𝑙1 = 𝑆𝐿(1), and for each value 

of 𝑆(2) and 𝑆(3) such that 0 ≤ 𝑆(2) ≤ 𝐺2, 0 ≤ 𝑆(3) ≤ 𝐺3 and 0 ≤ 𝑆(2) ≤

𝛼𝑌(𝑘1, 2), 0 ≤ 𝑆(3) ≤ 𝛼𝑌(𝑘1, 3). 

ii. For period 2, compute 𝑡𝑛𝑔( 𝑘2, 𝑙2, 1, 𝐺2 − 𝑆(2), 𝐺3 − 𝑆(3), 1, 𝑆′(2), 𝑆′(3), 1 −

 𝛼𝑌(𝑘1 ,1), 𝐺𝑒𝑛𝑋(1) − 𝛼𝑋( 𝑙1, 1), 𝐺𝑒𝑛𝑌(2) − 𝛼𝑌(𝑘1 ,2), 𝐺𝑒𝑛𝑋(2) −

𝛼𝑋( 𝑙1, 2), … , 𝐺𝑒𝑛𝑌(𝑛𝑔) − 𝛼𝑌(𝑘1, 𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔) − 𝛼𝑋( 𝑙1, 𝑛𝑔)) for each 

value of 𝑘2 and 𝑙2 such that 𝑘2 + 𝑙2 = 𝑆𝐿(2) and for each value of 𝑆′(2) 

and 𝑆′(3) such that 0 ≤ 𝑆′ (2) ≤ 𝐺2 − 𝑆(2), 0 ≤ 𝑆′(3) ≤ 𝐺3 − 𝑆(3) and 0 ≤

𝑆′(2) ≤ 𝛼𝑌(𝑘2, 2), 0 ≤ 𝑆′(3) ≤ 𝛼𝑌(𝑘2, 3).  Note that definitions of 𝛼𝑌 and 𝛼𝑋 

etc. are the definitions applicable to the arguments of 𝑡3 for period 1. 

iii. Then, for the sons of Szajndel, the factor is   𝑇𝑛𝑔
𝐺𝑒𝑛 (2, 𝑆𝑆, 0, 𝐺2 − 𝑆(2) −

𝑆′(2), 𝐺3 − 𝑆(3) − 𝑆′(3), 0,0,0, 𝐺𝑒𝑛(1) − 𝛼𝑌(𝑘1, 1) − 𝛼𝑌(𝑘2, 1), 𝐺𝑒𝑛(2) −

𝛼𝑌(𝑘1, 2) − 𝛼𝑌(𝑘2, 2), … , 𝐺𝑒𝑛(𝑛𝑔) − 𝛼𝑌(𝑘1, 𝑛𝑔) − 𝛼𝑌(𝑘2, 𝑛𝑔)) ∗
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𝑁1+𝐺2+𝐺3+𝑘1+𝑘2−𝜏−14, where 𝑇𝑛𝑔
𝐺𝑒𝑛 is given by Equation (41) and 𝛼𝑌 is defined 

by 

         𝛼𝑌(𝑘2, 𝑖) = 𝑘2 − 𝛽𝑌(𝑖 − 1)   where 𝛽𝑌(𝑖) ≡ ∑ (𝐺𝑒𝑛𝑌(𝑗) − 𝛼𝑌(𝑘1, 𝑗))𝑖
𝑗=1    

                          and 𝛽𝑌(𝑖 − 1) ≤  𝑘2 ≤ 𝛽𝑌(𝑖)          and for 𝑗 < 𝑖,    

                                       𝛼𝑌(𝑘2, 𝑗) = 𝐺𝑒𝑛𝑌(𝑗) − 𝛼𝑌(𝑘1, 𝑗) 

 

 The factor of 𝑁 is present in order to cancel the factor in equation (41), where 

the term 𝜏 is defined. 

iv. Finally, sum over all 𝑘1, 𝑙1, 𝑘2, 𝑙2, 𝑆(2), 𝑆′(2), 𝑆(3), 𝑆′(3) such that 𝑘1 + 𝑙1 =

𝑆𝐿(1), 𝑘2 + 𝑙2 = 𝑆𝐿(2), 0 ≤ 𝑆(2) + 𝑆′(2) ≤ 𝐺2, 0 ≤ 𝑆(3) + 𝑆′(3) ≤ 𝐺3. Then 

multiply by a factor of 𝑁20+𝜏−𝐺2−𝐺3. 

A3. We next analyze the computation of 𝑄𝑛𝑔
𝐴 (𝑆𝐿(1), 𝑆𝐿(2), 𝑆𝑆), the number of combinations 

consistent with known ancestors, as well as known sons, given the previous definitions of 

the arguments of  𝑆𝐿(1), 𝑆𝐿(2) and 𝑆𝑆.  Start by noting that Leyzor was born in period 1, 

and Jonas was born in period 2.  Therefore, we need only consider situations 

where 𝑆𝐿(1) ≥ 1 and 𝑆𝐿(2) ≥ 1.  We know that the son Jonas was named after Abraham’s 

father Jonas.  Leyzor could have been named after any of the unknown ancestors.   Define 

 𝑞𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) to be 

the number of possible configurations in period 1 – consistent with the one known son –  

consisting of 𝑘 sons who are named after possible26 ancestors of Abraham and 𝑙 sons who 

are named after possible ancestors of Laja, given 𝐺𝑒𝑛𝑌(𝑔) male ancestors of Abraham in 

generation 𝑔 and 𝐺𝑒𝑛𝑋(𝑔) male ancestors of Laja in generation 𝑔 – and furthermore 

consisting of 𝑆(𝑔) sons with names of known generation-𝑔 ancestors of Abraham, 𝐺2 

known 2nd-generation ancestors of Abraham and 𝐺3 known 3rd-generation ancestors of 

Abraham   We enumerate the possibilities by considering, in turn, the generation of the 

ancestor after whom Leyzor is named.    

1. Leyzor is named after generation 1: In that case, Leyzor must be the name of Laja’s 

father.  It is easy to see that for any configuration of sons, 

 

 𝑞𝑛𝑔
1,𝑋(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) = 

 𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆 (2), 𝑆 (3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔))  

 

𝑞𝑛𝑔
1,𝑌(… ) = 0 

 

where the superscript on 𝑞𝑛𝑔
𝑖,𝑋 denotes the restriction of 𝑞𝑛𝑔 to the case where Leyzor is 

named after generation 𝑖 of Laja’s ancestors and 𝑞𝑛𝑔
𝑖,𝑌 denotes the restriction of 𝑞𝑛𝑔 to 

the case where Leyzor is named after generation 𝑖 of Abraham’s ancestors. 

                                                           
26 Here, the term ‘possible’ refers to a configuration consistent with what is known.  In particular, since the son 
Leyzor is named after one of his ancestors, then the possible ancestor-configurations need to include Leyzor.  If we 
are limiting ourselves to sons named after 𝑔 generations, then Leyzor would need to be an ancestor amongst 
those generations. 
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2. Leyzor is named after one of Abraham’s ancestors in generation 2.  The calculation of 

sons is the same as for the calculation of 𝑡𝑔 in equation (68) except for three things: (a) 

multiply by the number of ways of assigning Leyzor to unknown ancestors in generation 

2 – in this case 𝐺𝑒𝑛𝑌(2) − 𝐺2 (b) There is one less relevant 2nd-generation ancestor of 

Abraham’s from which to choose the sons that aren’t named Leyzor (c) there is one less 

son to consider, from amongst the sons named after Abraham’s ancestors but since 

Leyzor can appear in any order amongst sons named after generation 2, the 

term (𝑘𝑌(𝑘, 𝑔) + 𝑙𝑋(𝑙, 𝑔))! in equation (68) needs to include Leyzor.  The term which 

changes in equation (68) is (𝐺𝑒𝑛𝑌(2)−𝐺(2)
𝛼𝑌(𝑘,2)−𝑆(2)

).  That term becomes (𝐺𝑒𝑛𝑌(2)−𝐺(2)−1
𝛼𝑌(𝑘,2)−𝑆(2)−1

) =

(𝐺𝑒𝑛𝑌(2)−𝐺(2)
𝛼𝑌(𝑘,2)−𝑆(2)

) ∗
𝛼𝑌(𝑘,2)−𝑆(2)

𝐺𝑒𝑛𝑌(2)−𝐺(2)
.27  We therefore get 

               

  𝑞𝑛𝑔
2,𝑌(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), …  𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) = 

  𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆 (2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) 

          ∗ (𝐺𝑒𝑛𝑌(2) − 𝐺2) ∗
𝛼𝑌(𝑘,2)−𝑆(2)

𝐺𝑒𝑛𝑌(2)−𝐺(2)
= 

 𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆 (2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔))

∗ (𝛼𝑌(𝑘, 2) − 𝑆(2)) 

 

3. Leyzor is named after one of Laja’s ancestors in generation 2.  This can happen in one of 

2 ways (𝐺𝑒𝑛𝑋(2) = 2), provided that at least one of Laja’s sons was born previously 

(therefore in period 1) and named after generation 1.  Following the same logic as 

above, 

 

   𝑞𝑛𝑔
2,𝑋(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) = 

  𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆 (2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) ∗

                                              𝛼𝑋(𝑙, 2) 

         

 

4. Leyzor is named after one of Abraham’s ancestors in generation 3.  We can use the logic 

above.   

  

𝑞𝑛𝑔
3,𝑌(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) = 

  𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆 (3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) 

       ∗ (𝛼𝑌(𝑘, 3) − 𝑆(3)) 

    

5. Leyzor is named after one of Laja’s ancestors in generation 3.  As before 

 

𝑞𝑛𝑔
3,𝑋(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) = 

𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆 (2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) 

                                                           
27 I will introduce the notation 

𝑎

𝑏
 to denote 

𝑎

𝑏
 when 𝑏 ≠ 0 but when 𝑏 = 0, then 

𝑎

𝑏
= 0.  In the context being used 

here, it is easy to see that this notation is required for the equality to hold. 
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       ∗ 𝛼𝑋(𝑙, 3))  

 

6. Since 𝑆(𝑔) = 0 for 𝑔 > 3 we can generalize the above to get 

 

𝑞𝑛𝑔
𝑔,𝑌

(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) = 

𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆 (2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) 

       ∗ 𝛼𝑌(𝑘, 𝑔)  

 

and 

 

𝑞𝑛𝑔
𝑔,𝑋

(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) = 

𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆 (2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) 

       ∗ 𝛼𝑋(𝑙, 𝑔) 

 

7. We now sum all of this to obtain 𝑞3.    

 

  𝑞𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) =  

 𝑡𝑛𝑔(𝑘, 𝑙, 𝐺1, 𝐺2, 𝐺3, 𝑆(1), 𝑆 (2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔)) ∗

(𝑘 + 𝑙 − 𝑆(1) − 𝑆(2) − 𝑆(3) )      (69) 

           

8. In computing 𝑄𝑛𝑔
𝐴 (𝑆𝐿(1), 𝑆𝐿(2), 𝑆𝑆), the sequence of multiplicands is as follows:  

i. For period 1, compute 

𝑞𝑛𝑔( 𝑘1, 𝑙1, 0, 𝐺2, 𝐺3, 0, 𝑆(2), 𝑆(3), 𝐺𝑒𝑛𝑌(1), 𝐺𝑒𝑛𝑋(1), … , 𝐺𝑒𝑛𝑌(𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔))  

for each value of  𝑘1 and 𝑙1 such that 𝑘1 + 𝑙1 = 𝑆𝐿(1) and 𝑙1 > 0 and for each 

value of 𝑆(2) and 𝑆(3) such that 0 ≤ 𝑆(2) ≤ 𝐺2, 0 ≤ 𝑆(3) ≤ 𝐺3 and 0 ≤

𝑆(2) ≤ 𝛼𝑌(𝑘1, 2), 0 ≤ 𝑆(3) ≤ 𝛼𝑌(𝑘1, 3). (Note that we set 𝐺𝑒𝑛𝑌(1) = 0 in 

period 1 because Jonas is Abraham’s ancestor in the first generation, and since a 

son was named, in period 2, after Jonas, then the ancestor Jonas isn’t relevant in 

period 1.) 

ii. For period 2, the number of combinations consistent with 𝑘2 sons named after 

ancestors of Abraham and 𝑙2 sons named after Laja, is 𝑡𝑛𝑔( 𝑘2, 𝑙2, 1, 𝐺2 −

𝑆(2), 𝐺3 − 𝑆(3),1, 𝑆′(2), 𝑆′(3), 1 − 𝛼𝑌(𝑘1, 1), 𝐺𝑒𝑛𝑋(1) −

𝛼𝑋( 𝑙1, 1), 𝐺𝑒𝑛𝑌(2) − 𝛼𝑌(𝑘1 ,2), 𝐺𝑒𝑛𝑋(2) − 𝛼𝑋( 𝑙1, 2), … , 𝐺𝑒𝑛𝑌(𝑛𝑔) −

𝛼𝑌(𝑘1, 𝑛𝑔), 𝐺𝑒𝑛𝑋(𝑛𝑔) − 𝛼𝑋( 𝑙1, 𝑛𝑔)) for each value of 𝑘2 and 𝑙2 such 

that 𝑘2 + 𝑙2 = 𝑆𝐿(2) and for each value of 𝑆′(2) and 𝑆′(3) such that 0 ≤

𝑆′(2) ≤ 𝐺2 − 𝑆(2), 0 ≤ 𝑆′(3) ≤ 𝐺3 − 𝑆(3) and 0 ≤ 𝑆′(2) ≤ 𝛼𝑌(𝑘2, 2), 0 ≤

𝑆′(3) ≤ 𝛼𝑌(𝑘2, 3).  (Note that we set to 1, the number of relevant Generation-1 

ancestors of Abraham, since we know that Jonas was the relevant ancestor.)  

Note that definitions of 𝛼𝑌 and 𝛼𝑋 etc. are the definitions applicable to the 

arguments of 𝑞𝑛𝑔 for period 1. 

iii. Then, for the sons of Szajndel, the factor is 𝑄𝑛𝑔
𝐺𝑒𝑛 (2, 𝑆𝑆, 0, 𝐺2 − 𝑆(2) −

𝑆′(2), 𝐺3 − 𝑆(3) − 𝑆′(3), 0,0,0, 𝐺𝑒𝑛(1) − 𝛼𝑌(𝑘1, 1) − 𝛼𝑌(𝑘2, 1), 𝐺𝑒𝑛(2) −
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𝛼𝑌(𝑘1, 2) − 𝛼𝑌(𝑘2, 2), … , 𝐺𝑒𝑛(𝑛𝑔) − 𝛼𝑌(𝑘1, 𝑛𝑔) − 𝛼𝑌(𝑘2, 𝑛𝑔)) ∗

𝑁3+𝐺2+𝐺3+𝑘1+𝑘2−𝜏−14  where  𝑄𝑛𝑔
𝐺𝑒𝑛 is given by equation(40) and 𝛼𝑌 is defined 

as in A2.5.iii.  The factor of 𝑁 is present in order to cancel the factor in 

equation(40) where the term 𝜏 is defined.  

iv. Finally, sum over all 𝑘1, 𝑙1, 𝑘2, 𝑙2, 𝑆(2), 𝑆′(2), 𝑆(3), 𝑆′(3) such that 𝑘1 + 𝑙1 =

𝑆𝐿(1), 𝑘2 + 𝑙2 = 𝑆𝐿(2), 0 ≤ 𝑆(2) + 𝑆′(2) ≤ 𝐺2, 0 ≤ 𝑆(3) + 𝑆′(3) ≤ 𝐺3. Then 

multiply by a factor of 𝑁17+𝜏−𝐺2−𝐺3. 

A4. Next, we compute partial probabilities  𝑃𝑛𝑔
𝐴 (𝑆𝐿(1), 𝑆𝐿(2), 𝑆𝑆), the probability – for each of 

𝑆𝐿(1), 𝑆𝐿(2) and 𝑆𝑆 – of selecting the sons Jonas, Leyzor, Chaskel and Mosze-Chaim given 

the known ancestors. We use the previous definitions of the arguments of  𝑆𝐿(1), 𝑆𝐿(2) 

and 𝑆𝑆, as well as 𝑄𝑛𝑔
𝐴  and 𝑇𝑛𝑔

𝐴 . 

 

     𝑃𝑛𝑔
𝐴 (𝑆𝐿(1), 𝑆𝐿(2), 𝑆𝑆) =

 𝑄𝑛𝑔
𝐴 (𝑆𝐿(1),𝑆𝐿(2),𝑆𝑆)

 𝑇𝑛𝑔
𝐴 (𝑆𝐿(1),𝑆𝐿(2),𝑆𝑆)∗(𝑆𝐿(1)

1 )∗(𝑆𝐿(2)
1 )∗ (𝑆𝑆

2 )
 (70) 

 

A5. The final step is to compute the probability of selecting the sons Jonas, Leyzor, Chaskel and 

Mosze-Chaim given the known ancestors. 

 

𝑃𝑇𝑟𝑒𝑒
𝐴𝑏 (𝑆𝑜𝑛𝑠, 𝑀1, 𝑀2, 𝑀3, 𝐺2, 𝐺3) = ∑ ∑ ∑ 𝑃𝑛𝑔

𝐴 (𝑠, 𝑡, 𝑢)∞
𝑢=1

∞
𝑡=1

∞
𝑠=1 ∗ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠, 𝑀1) ∗

            𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑡, 𝑀2) ∗ 𝑓𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑢, 𝑀3)  

where 𝑃𝑛𝑔
𝐴 (𝑠, 𝑡, 𝑢) is given by (70) (many of the arguments are suppressed)  where      

 𝑀1, 𝑀2 and 𝑀3 are the Poisson expected  values based on the time frames given in A1 as 

well as on assumption GA3. 

                                   𝑀1 = 3.6,   𝑀2 = 0.4,   𝑀3 = 3.0  (71) 

 

These results were computed (as were others previously) within Microsoft Excel, using the Visual Basic 

feature.  The computation has considerably more complexity than the previous ones used to obtain 

probabilities for other sons of JD.   Unlike the previous cases, I have not been able to show that results 

are independent of assumptions made about the number of ancestors in generations earlier than the 3rd 

generation.  Therefore, the calculations have been explicitly done through 5 ancestral generations with 

the assumption that there are 16 males in generation 4 and 32 males in generation 5.  The Poisson 

factors in equation (71) sharply suppress contributions from the earlier generations, so those 

contributions are negligible.  In fact, by comparing results when changing the number of 4th-generation 

ancestors, it turns out that those differences are also negligible (but don’t appear to be exactly 0).  As 

another practical consideration, sums aren’t taken out beyond 20 sons for each of 𝑆𝐿(1), 𝑆𝐿(2) and  𝑆𝑆.  

This corresponds to 8000 separate calculations of the Poisson function.  Within two significant figures, 

those results aren’t different than when sums are taken up to 10 sons (for each of the 3 variables 

above).  A more rigorous analysis could be done by examining asymptotic behavior of the various 

equations we’ve used.   

 

Table 8 – Sons of Abraham 
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Differences from   
Chart 27  and  

Chart 28 

∅: (𝑺𝒐𝒏𝒔, 𝑴𝟏, 𝑴𝟐, 𝑴𝟑, 𝑮𝟐, 𝑮𝟑 ) 

𝒑∅ = 𝑷𝑻𝒓𝒆𝒆
𝑨𝒃 (∅) 

𝑨: (𝑺𝒐𝒏𝒔, 𝑴𝟏, 𝑴𝟐, 𝑴𝟑, 𝑮𝟐, 𝑮𝟑 ) 

𝒑𝑨 = 𝑷𝑻𝒓𝒆𝒆
𝑨𝒃 (𝑨) 

𝑷𝑩𝒂𝒚𝒆𝒔(𝟎. 𝟖, 𝒑∅, 𝒑𝑨) 

    
No difference (Sons,3.6,0.4,3.0,2,2) 

𝑝∅ = 0.048 ∗ 𝑁−3 
(Sons,3.6,0.4,3.0,1,1) 

 𝑝𝐴 = 0.079 ∗ 𝑁−3 
0.71 

Null hypothesis 
doesn’t include 

Meyer 

(Sons,3.6,0.4,3.0,2,1) 
𝑝∅ = 0.045 ∗ 𝑁−3 

(Sons,3.6,0.4,3.0,1,1) 
𝑝𝐴 = 0.079 ∗ 𝑁−3 

0.69 

 

What is a bit disconcerting, is that the Bayes probability is slightly higher for the case where Meyer is 

included as a known ancestor, than in the case when Meyer isn’t included.  Usually the Bayes 

probabilities are higher when less information is known.  This situation appears to be an artifact of the 

Poisson weightings (without them, the unweighted probabilities are indeed a bit higher for the case 

where Meyer isn’t included). 

 

Joint Probabilities 
We have determined, for each of the children of Jonas, the probability that Aron (and separately Aron 

and Meyer) was a specific ancestor of theirs, and we have also obtained that probability based on the 

information about the sons of Jonas.  Since these probabilities are all independent, we can compute the 

joint probability by first calculating 𝑃∅ = ∏ 𝑝∅(𝑖)𝑖  where 𝑝∅(𝑖) is the value of 𝑝∅ previously calculated 

for either Jonas, or one of Jonas’s children – and then calculating 𝑃𝐴 = ∏ 𝑝𝐴(𝑖)𝑖  where 𝑝𝐴(𝑖) is the value 

of 𝑝𝐴 previously calculated for either Jonas, or one of Jonas’s children.   Then we can apply the Bayes 

equation to get 

    𝑃(𝐻∅|"𝐽𝐷 𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑎𝑛𝑡𝑠") = 𝑃𝐵𝑎𝑦𝑒𝑠(0.8, 𝑃∅, 𝑃𝐴)  (72) 

Table 9  below summarizes all of the values of 𝑝∅(𝑖) and 𝑝𝐴(𝑖) that we’ve obtained in Tables 1 through 8 

for the key variants – null hypothesis (Aron and Meyer), null hypothesis without Meyer, alternate 

hypothesis.  We’ll also discuss later some of the other variants that were examined. 

 

Table 9 – Summary  

JD and children 𝑝∅  𝑝∅ -- no Meyer 𝑝𝐴 
    

Jonas  0.0015 ∗ 𝑁−3 0.0042 ∗ 𝑁−3 0.0094 ∗ 𝑁−3 
Jacob (Table 2)  0.023 ∗ 𝑁−2 0.14 ∗ 𝑁−3 0.17 ∗ 𝑁−3 
Wife of Jacob-Lipman 0.17 ∗ 𝑁−1 0.17 ∗ 𝑁−1 0.24 ∗ 𝑁−1 
Abraham 0.048 ∗ 𝑁−3 0.045 ∗ 𝑁−3 0.079 ∗ 𝑁−3 
Fajga 0.20 0.20 0.20 
Eyzyk 0.055 ∗ 𝑁−3 0.073 ∗ 𝑁−3 0.21 ∗ 𝑁−3 
Tanchum 0.13 ∗ 𝑁−1 0.14 ∗ 𝑁−1 0.17 ∗ 𝑁−1 
Mosze 1.0 1.0 1.0 

Naftali Hersz 0.13 ∗ 𝑁−1 0.14 ∗ 𝑁−1 0.17 ∗ 𝑁−1 
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From this summary table, we can then multiply down the columns and then derive from equation (72): 

𝑷(𝑯∅|"𝑱𝑫 𝒅𝒆𝒔𝒄𝒆𝒏𝒅𝒂𝒏𝒕𝒔") = 𝟎. 𝟐𝟐 assuming 𝑵 = 𝟓𝟎 (the value is larger if 𝑵 is larger)   (73) 

𝑷(𝑯∅ − 𝑴𝒆𝒚𝒆𝒓|"𝑱𝑫 𝒅𝒆𝒔𝒄𝒆𝒏𝒅𝒂𝒏𝒕𝒔") = 𝟎. 𝟏𝟐   (74) 

Earlier in this paper (and earlier in the course of this investigation – long before I derived the above 

probabilities), it was suggested that the null hypothesis should be rejected if the probability of 𝐻∅
𝐽𝐷, 

given evidence from records of JD’s descendants, is less than a level of significance of 0.05.  Quite 

clearly, the probability of 𝐻∅
𝐽𝐷

 (with or without the inclusion of Meyer) is much greater than the level of 

significance.  However, if it turned out that the documentary evidence for Meyer was considerably 

weakened, then we might conclude from the value in equation (74) (74), that some reasonable doubt 

could be cast on the claim that Aron was the father of Jonatan of Drobin. 

For some of the individuals, such as Jonas and Eyzyk and Jacob, we explored a few alternative scenarios.  

For example, for Jacob we examined different ways of accounting for double-names, and for Jonas we 

considered the possibility that some of his putative sons, were actually sons-in-law.  None of these 

alternative scenarios significantly change the above conclusions.(74) 
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