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1 Introduction
The discussions that I’ve had with various people, including those during our last
meeting on August 3, have convinced me to approach Section 2.3 with even more
care than I had been striving for. There are quite a few things in this chapter that
verge on incomprehensible, in some cases because they aren’t motivated, and in
other cases because terms aren’t defined. To be fair to Kachelriess, he’s not the
only one whose texts have these kinds of problems.

Several of you have noted that Lancaster appears to be clearer about a number
of things that we are encountering in Kachelriess. I’m afraid I am also coming to
that conclusion. However, what has drawn me to Kachelriess is that he plunges
directly into the Path Integral. Lancaster, like many others, postpones that discus-
sion until much later in his book. I’m hoping that once you all make your way
through Kachelriess Chapter 2, you’ll be able to settle into the Path Integral way
of doing things and that you will come to appreciate this approach. But frankly,
since I’ve never actually learned Quantum Field Theory this way, I can’t predict
what obstacles are ahead of us.

I had decided to try to press the reset button on all this and see if along the
way, I could answer questions that have been posed by several of you, or at least
point you to material that seems readable. Before subjecting you to all this, I sent
my notes to Jose and Matthew and based on their comments have concluded that
these notes are far less clarifying that I’d hoped. So, what follows is a re-write
where I’ve put many of the notes into appendices which you can, at your leisure,
look up for reference – but with no promises that they’ll help. Here is the outline.

• Takeaways that we’ll need to progress to the next section

• Products in the path integral, why we care and how we could compute them
on a super-duper-computer

• Time-ordering and path integrals
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• Appendix A: (Review)Motivation and preview – the S-matrix

• Appendix B: Some quantum mechanics and notation, especially Schrodinger
and Heisenberg formulations

• Appendix C: Vacuum to vacuum transitions, Green functions, causality and
iε

• Appendix D: Using the generating functional to compute products in the
path integral

By the way, I will not refer to the section (pp 25 and 26) on the vacuum
persistence attitude since I strongly recommend you don’t read it.

2 Progressing to the next sections of Kachelriess
Here are the key points that we’ll need for the future.

• (see the end of section 2.3) Definition:

G(t1, ...tn) ≡ 〈0|T{Q(t1)...Q(tn)}|0〉 (1)

The operators Q(t) are the Heisenberg-picture position operators (I use
upper-case for operators rather than the caret notation used by Kachel-
riess). The term G(t1, ...tn) is called the n-point Green(’s) function (for
non-relativistic quantum mechanics).1 We care about the Green’s function
because, as explained in Appendix A, it is required for computing the S-
matrix2 and the S-matrix essentially contains everything we care about in
Quantum Field Theory.

• (see 2.53) Definition3:

Z[J ] ≡
∫
Dq(t)ei(S[q(t)]+J(t)q(t)+iε) (2)

1My notation differs a bit from Kachelriess because as I point out in Appendix B, there is no
difference between |0,∞〉 and |0〉.

2More precisely, we care about the Green’s function for quantum fields Φ which, like the Q
operator can be time-ordered.

3Implicitly we take ε→ 0.
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• Path Integral

G(t1, ..., tn) = 〈0|T{Q(t1)...Q(tn)}|0〉

= K ′
∫
Dq(t)q(t1)...q(tn)ei(S[q(t)]+iε)

= K ′(−i)n[
δ

δJ(t1)
...

δ

δJ(tn)
]|J(t)=0

∫
Dq(t)ei(S[q(t)]+J(t)q(t)+iε)

= (−i)n 1

Z[0]

δnZ[J ]

δJ(t1)...δJ(tn)
|J(t)=0

(3)
Unlike Kachelriess, I’ve kept the constant K ′ which, from equation (15) in
Appendix C, is just the inverse of Z[0].

3 Computing the path integral including products
Consider equation (3), with only two insertions (n = 2).

〈0|T{Q(ta)Q(tb)}|0〉 = K ′
∫
Dq(t)[q(ta)q(tb)ei(S[q(t)]+iε)] (4)

For now, focus on the right hand side without asking whether the equation is
correct, or what is the significance of the left hand side. Can we compute it?

The right-hand side is a multi-dimensional integral. To be precise, it is infinite-
dimensional, but we can approximate it numerically by picking only a finite num-
ber of the integrals and then taking a limit. The numerical process is illustrated
in Figure (1) which is an approximation to Equation (4) where we take F (...) =
[qtaqtbe

i(S[q(t)]+iε)], evaluating the action at the points qti where the ti include ta and
tb. It is important to notice, is that the integrals can be evaluated in any order. So
even though we imagine paths that progress from right to left corresponding to an
ordering of time, the actual calculation doesn’t depend on this path interpretation.
The time-ordering is not encoded in the order that we choose the integrals. Rather,
it is encoded in the action S in terms like 1

δ
(qt+δ − qt) which are finite-difference

approximations of q̇.
In principle, if everything converged4 and we had a big enough computer, all

of quantum mechanics and quantum field theory could be worked out numerically

4What could cause numerical difficulty, is the fact that ei(S+iε) is complex. However, ana-
lyticity properties can be proven and it turns out that by rotating time in the complex plan by 90
degrees (t → it), all Green’s functions may be analytically continued as functions of the times.
This rotation is called the Wick rotation. Kachelriess elaborates on this in Remark 2.1. The Wick
rotation results in the path-integral integrands being real (and bounded) rather than complex, and
thus amenable to numerical computation.
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Figure 1: Numerical approximation to the path integral
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Numerical approximation of path integral of F
Multi-dimensional integral of F, integrated (numerically) along each line. 

𝑑𝑞𝑡5𝑑𝑞𝑡4𝑑𝑞𝑡3𝑑𝑞𝑡2𝑑𝑞𝑡1𝑑𝑞𝑡0 𝐹(𝑞𝑡5, 𝑞𝑡4 , 𝑞𝑡3 , 𝑞𝑡2, 𝑞𝑡1 , 𝑞𝑡0)

න𝑑𝑞𝑡5𝐹( 𝑞𝑡5 , … ) ≈ 

𝑖

𝐹(𝑥𝑖 , … )

by integrating the path integral. That, in fact, has been the approach of Lattice
Quantum Field Theory and it has been remarkably successful at calculating, based
on the Lagrangian theory for quarks and gluons, masses of elementary particles
like the proton and pion, as well as many other measured parameters of the theory.

Numerical methods aren’t satisfying ways of gaining insight into the theory
and for many problems, they aren’t sufficiently accurate. So it’s important to
develop some intuitive understanding of the path integral. If you have the patience
for it, I recommend portions of the book by Feynman and Hibbs. In particular,
section 6.1 from about pp. 120 - 125, provides a rather picturesque interpretation
of the path integral as applied to a perturbative expansion (actually, it’s the Dyson
series although they don’t say so).

What I don’t find useful, is Kachelriess’s statement on page 25 just prior to his
section on the Vacuum Persistence Amplitude. He says, ”Physically, the expres-
sion (2.50) corresponds to the probability amplitude that a particle moves from
qi(ti) to qf (tf ) having the intermediate positions q(t1), ..., q(tn)”. The way I un-
derstand this, it would seem that the only paths to be considered are those which
pass through points mentioned (q(t1), etc.). On the other hand, that doesn’t tell
us anything since q(t1), ..., q(tn) can take on any values. So this simply appears
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to be the path integral but without the q(ti) insertions. It seems to me that the
significant new feature distinguishing this path integral from the one representing
the propagator (as covered in section 2.2), is that each path gets weighted by the
values of q(ti) which it passes through.

4 Time Ordering
Let’s make sure we’re clear about the definition of time-ordering in equation
(1). Operators at different times generally don’t commute. E.g. Q(t)Q(t′) 6=
Q(t′)Q(t). Define the time-ordered product T{Q(t)Q(t′)} as

T{Q(t)Q(t′)} = Q(t)Q(t′) if t > t′

= Q(t′)Q(t) if t′ > t

This can be generalized to more operators, so that they are always arranged with
time increasing from right to left.

Kachelriess, in the section from equations 2.41 to 2.45, proves equation (4)
above. I would suggest that it is easier to understand his proof if you look at the
special case with Q instead of A and B. Consider for example, the term Q(ta).
Recall from the derivation of the path integral, that we have a many-dimensional
integral, and for each integral, we have a resolution of the identity of the form∑
|qn, tn〉〈qn, tn|. In particular, we have an integral of the form∫

dqae
iS[q]|qa, ta〉〈qa, ta| (5)

Now suppose you multiply the integrand by qa, obtaining∫
dqae

iS[q]qa|qa, ta〉〈qa, ta| (6)

Since Q(ta)|qa, ta〉 = qa|qa, ta〉, we can instead write the above integral as

Q(ta)

∫
dqae

iS[q]|qa, ta〉〈qa, ta| (7)

Recall that we were only looking at one of the many integrals that make up
the path integral, and that each has its own resolution of the identity. This demon-
strates that the effect of including qa as a factor in the integrand, is the same as
including a factor ofQ(ta) in the inner product 〈qf , tf |T{Q(ta)...}|qi, ti〉. Kachel-
riess explains, in equation 2.43, why the time-order naturally falls out as a conse-
quence of the ordering of the integrals5.

5More precisely, as I pointed out earlier,what ultimately matters here isn’t the order of the
integrals, but rather the time-encoding implicit in the action. But by doing the integrals in time-
order, the snippets of action become organized in natural time order so this is the easiest way to
think about things.
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Appendix A: Motivation and Preview

Figure 2: Scattering

pA

pB

PC

PD

Incoming particles collide
t = - ∞

Outgoing particles scatter
t = + ∞

The probability amplitude that two particles, with 
4-momenta pA and pB , collide and end up with 
momenta pC and pD is  < pC pD|S| pA pB > and is
called the Scattering matrix.

The operator S is the evolution operator that 
propagates the initial state to the final state.

Notation: 𝑝 = 𝑝0, 𝑝1, 𝑝2, 𝑝3 = (𝐸, Ԧ𝑝)

Much of Quantum Field Theory is concerned with computing the Scattering
Matrix 〈f |S|i〉. There is a theorem in field theory (section 2.3 is about nonrel-
ativistic quantum mechanics – field theory comes later) called the LSZ theorem
(not proven here)]. For Figure (2), the LSZ theorem is

〈pCpD|S|pApB〉 =

i

∫
d4xAe

−ipA·xA(�A +m2)d4xBe
−ipB ·xB(�B +m2)d4xCe

ipC ·xC (�C +m2)]d4xDe
ipD·xD(�D +m2)

〈0|T{φ(xA)φ(xB)φ(xC)φ(xD)}|0〉
(8)

where �A = ∂2

∂(x0A)2
− ∂2

∂(x1A)2
− ∂2

∂(x2A)2
− ∂2

∂(x3A)2
, φ(x) is the field, and the last line

is the Green function.
So, the physics we care about is on the left hand side of the equation, and

the right hand side is what we need to compute. The goal of Quantum Field
Theory is to compute Green functions.

Appendix B: Some quantum mechanics and notation
In bra-ket notation, the quantities we can measure in QM look like

〈s1|O|s1〉 (9)

where the ket |s1〉 is a vector in the Hilbert space, the bra 〈s1| is its dual and O
is a Hermitian operator that acts on the Hilbert space. The measured quantity is
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described as the expectation value of that observable when the system is in the
state |s1〉.

We also encounter quantities of the type 〈s2|O|s1〉 in intermediate steps of
quantum mechanical calculations. Those quantities generally don’t have a useful
physical interpretation although physicists occasionally come up with pictorial
ways of describing those quantities.

If O1 and O2 are Hermitian operators that don’t commute, then O1O2 is an
operator which is not Hermitian. Therefore it is not observable. However, such
an operator might occur at intermediate steps in quantum mechanical calculations.

Often, authors try to distinguish between numbers and operators by using a
caret to indicate an operator. For example Q̂ would be the position operator. In
these notes I mostly won’t use the caret to designate operators, but will often use
upper case letters for operators and lower case letters for complex numbers.

The laws of physics tell us how expectation values change with time. The
laws can be described in various equivalent ways, since only the combination in
equation (9) is relevant. There are three well-known pictures for describing time-
evolution.

1. The Schrodinger Picture – the Picture generally used for nonrelativis-
tic quantum mechanics. Parameterize the state with time, t. For example
|s1(t)〉. Explicitly, a reference time t0 is chosen, and we write |s1(t)〉 =
U(t, t0)|s1(t0)〉 where U is a unitary operator called the evolution opera-
tor. The observable represented by O is generally time-independent. Then
the expectation value changes from 〈s1(t0)|O|s1(t0)〉 to 〈s1(t)|O|s1(t)〉. If
we want to avoid ambiguity, we sometimes write OSchrodinger ≡ O and
|s1(t)Schrodinger〉 ≡ |s1(t)〉

• I mentioned a reference time t0. Most often, we choose that to be 0.
That will be my convention from now on. So t0 = 0.

• In the Schrodinger Picture, when an observable can be mathematically
represented as O(t, ...) we say that the observable is explicitly time
dependent. This can happen, for example, if our system of interest
(described by the Hilbert space) is under the influence of some external
time-changing forces. An important case is the Hamiltonian. In most
of the Quantum Field Theory we do, the Hamiltonian operator (in the
Schrodinger Picture) is not explicitly time-dependent. In that case,
U(t, 0) = e−iHt.
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2. The Heisenberg Picture – the Picture generally used in Quantum Field
Theory. The states are time-independent. For connecting with the Schrodinger
picture, set |s1〉Heisenberg ≡ |s1(t0)〉Schrodinger. Now the observables are
represented by time-dependent operators O(t). In order for the Schrodinger
and Heisenberg pictures to give the same expectation values, we must have
O(t) = eiHtOe−iHt. If we want to avoid ambiguity, we sometimes write
OHeisenberg(t) ≡ O(t).

3. The Interaction Picture – the Picture generally used for old-fashioned
perturbation theory – included for completeness, and also because I’ll
briefly mention it later. This is a hybrid between the Heisenberg and
Schrodinger picture and is typically used in situations where it is conve-
nient to write the Schrodinger picture Hamiltonian as a sum H = H0 +HI

where H0 is the usual free Hamiltonian (or more generally, the Hamiltonian
of an explicitly solvable theory) and HI is called the interaction term. Then
both states and observables are parameterized by time, but with the equa-
tions |s1(t)〉interaction ≡ eiH0teiHt|s1(0)〉Schrodinger and O(t)interaction =
eiH0tOSchrodingere

−iH0t.

So far, I’ve only referred to states in the generic form |s1〉 or |s1(t)〉. But
commonly, states are written differently. Here are some examples that we will
encounter frequently.

• |q〉 is a state in the Heisenberg picture, which is an eigenstate of the Heisenberg-
picture position operatorQ(0), with eigenvalue q. In other words,Q(0)|q〉 =
q|q〉. (Notice that Q(0) = Q, where Q is the Schrodinger-picture position
operator.) For sticklers among you, the |q〉 states aren’t strictly speaking
states of the Hilbert space since Q doesn’t have a discrete spectrum. There
are many ways to deal rigorously with this kind of thing. Mathematicians
speak of the spectral decomposition. But physicists can get away pretend-
ing that these states form some kind of a limit of discrete bonafide Hilbert
space vectors. (If there is more than one eigenvector with the same eigen-
value q, some further notation is required to distinguish the vectors from
one another. For example |q, σ〉).

• |p〉 is the state which is an eigenstate of the momentum operator P , whose
eigenvalue is p. (Again, recall that the Heisenberg-picture operator P (0) is
the same as the Schrodinger-picture operator P .)

• |~p〉 is the state which is a simultaneous eigenvalue of operators Px, Py, Pz
with eigenvalues respectively px, py, pz. By the way, this is an example of
the kind mentioned above where it would be insufficient to simply specify
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|px〉 since there are many Px vectors whose eigenvalue is px but which have
different eigenvalues for Py etc.

• |ψn〉 is often used to designate a state which is the nth eigenstate of some
generic operator – often the Hamiltonian.

• |0〉 and |Ω〉 are both used to denote the lowest-energy eigenstate (i.e. the
eigenstate of H with the lowest eigenvalue) of the Hamiltonian. Depending
on context, we call that the vacuum state or the ground state.

• The state |qa, ta〉 often arises, and is a somewhat peculiar beast (in fact, I’d
persuaded myself that the notation was bogus but I’ve changed my mind).
We say, in English that this state ”is the state which, at time ta has the
position qa”. Mathematically, it is a Heisenberg Picture state which is an
eigenstate of Q(ta) with the property that Q(ta)|qa, ta〉 = qa|qa, ta〉. Now,
from this definition we have

eiHtaQe−iHta|qa, ta〉 = qa|qa, ta〉

Multiply left and right sides by e−iHt to obtain

Q[e−iHta |qa, ta〉] = qa[e
−iHt|qa, ta〉]

where we’ve invoked the fact that operators like e−iHt commute with num-
bers like qa. On both the left and right side, there is a state in square brack-
ets, which we will denote as |s〉, i.e. |s〉 ≡ [e−iHta|qa, ta〉]. The equation
above simply becomes

Q|s〉 = qa|s〉 (10)

In other words, it is an eigenstate of the position operatorQ (or alternatively
the Heisenberg position operatorQ(0) ), with eigenvalue qa. Recall that this
is precisely the definition of the Heisenberg-picture state |qa〉 (as always,
assume there’s only a unique such eigenstate). So what we’ve proven is that

e−iHta |qa, ta〉 = |qa〉. (11)

Recalling that Schrodinger-picture states are related to Heisenberg-picture
states by |s(t)〉 = e−iHt|s〉, we see that |qa〉 is the Schrodinger-picture state
evolved for a time ta from the Heisenberg-picture state |qa, ta〉. In other
words, the Schrodinger-picture state which, at t = 0 is an eigenstate of Q
with eigenvalue qa has evolved over a time ta from the state |qa, ta〉. Sim-
ilarly, we can draw the conclusion that the Schrodinger-picture state |qb〉
which at time t = 0 is an eigenstate of Q with eigenvalue qb, evolves over
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a time tb into |qb, tb〉. Alternatively, note that by multiplying both sides of
equation (11) with eiHt, we have |qa, ta〉 = eiHta|qa〉 . A similar argument
can be applied to 〈qb, tb| resulting in 〈qb, tb| = 〈qb|e−iHtb . Putting all this
together, we end up with

〈qb, tb|qa, ta〉 = 〈qb|e−iH(tb−ta)|qa〉 (12)

• Following above, we would say that the meaning of |0, ta〉 is ”the Heisenberg-
picture state with the property that it is the lowest-energy eigenstate of the
Heisenberg-picture Hamiltonian H(t)”. You’ll see this notation frequently.
But why? We have H(t) ≡ eiHtHe−iHt. But all these operators commute
so the exponentials cancel and we have, as expectedH(t) = H . The ground
state of H(ta) is therefore the ground state of H(tb) and so |0, ta〉 = |0〉.

– YOU DO NOT NEED TO FOLLOW ANY OF WHAT I WRITE
IN THIS BULLETED ITEM. I ADD IT ONLY FOR INTEREST
BUT NOTHING DEPENDS ON IT. I believe that this notation per-
sists in the literature owing to its origins in the original scattering the-
ory work by Dyson. He derived the Scattering Matrix by working in
the Interaction Picture. An excellent exposition of this is given in Lan-
caster chapter 18 (Chapter 18.2 pp 167-168 explains the Interaction
Picture, Chapters 18.3 and 18.4 explain the Dyson expansion and the
importance of time-ordering). The Dyson expansion is an alternative
slightly-outdated alternative to the LSZ formulation, but it’s arguably
a bit easier to follow the proof of the Dyson expansion than the proof
of LSZ. In the Interaction Picture, we have split the Hamiltonian into
a free part H0 and an interaction part. You’ll see that H(t)interaction is
actually time-dependent. So if you are working in the interaction pic-
ture, then |0, ta〉interaction isn’t |0〉interaction and it’s important to dis-
tinguish the two states. Since we work exclusively in the Heisenberg
picture in Kachelriess, I see no value in the notation |0, ta〉, although
admittedly I find that notation often makes its way into most other
texts.

Appendix C: Vacuum to vacuum transitions and causal-
ity
Let’s review. Kachelriess has introduced, without motivation, a quantity 〈qf , tf |T{Q(ta)Q(tb)}|qi, ti〉
(in his equation 2.45) and then shown that it is equivalent to a certain path inte-
gral which was discussed above. With equally no motivation, Kachelriess tells
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us in the section entitled ”Vacuum persistence amplitude”, that we actually want
the initial and final states to be the Hamiltonian ground state. In other words
〈0|T{Q(ta)Q(tb)}|0〉. Most other treatments of the subject don’t bother with the
first quantity (from equation 2.45). I have, with the LSZ equation (8), claimed why
it is important to examine vacuum-to-vacuum time-ordered products. To remind
you, the importance is that it’s a mathematical way to compute the scattering ma-
trix. I made no attempt to prove this statement. How does the path integral change
when we have an initial state |0〉 instead of |qa, ta〉? It turns out that a proper
answer to this question is a bit involved. Kachelriess makes a weak attempt to
discuss this in his section on ”Vacuum persistence amplitude”, but he simplifies
way too much and ultimately does little more than motivate the final answer. I
do not recommend that you attempt to follow him. If you really want a readable
treatment, I recommend Schwartz section 14.4. If you don’t have the text, ask me
and I’ll scan the 2 or 3 pages. In the meantime, I’ll just tell you the answer.

〈0|T{Q(ta)Q(tb)}|0〉 = K ′
∫
Dq(t)[q(ta)q(tb)ei(S[q(t)]+iε)] (13)

where the paths on the right are unconstrained (they don’t begin at a particular
point qa(ta) or end at a particular point qb(tb)). K ′ is a constant (generally different
than the constantK in equation (4)) independent of time. Also, by convention, the
notation means that we take the limit ε → 0+. In fact, the path-integral notation
we’ve been using looks the same (other than for the iε) as it did in equation (4) for
〈qf , tf |T{Q(ta)Q(tb)}|qi, ti〉. However, in both cases, the path integral notation
was a bit deficient because it doesn’t show the end-state constraints.

All of these equations are easily generalized to the case where there are more
terms in the time-ordered product, with K ′ independent of the number of terms
that are time-ordered. One special case is when there are no terms in the time-
ordered product. Specifically,

〈0|0〉 = K ′
∫
Dq(t)ei(S[q(t)]+iε) (14)

But we normalize 〈0|0〉 = 1. Therefore

K ′ = [

∫
Dq(t)ei(S[q(t)]+iε)]−1 (15)

To summarize, there are two differences in the path integral when we are look-
ing at the vacuum-to-vacuum time-ordered product. First, the paths are uncon-
strained. Second, there is an iε introduced into the action. As you may recall from
several sections ago, the iε imposes causality and, as it turns out, is also necessary
to make the path integral converge.
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One minor point that comes up is this: As you compute the path integral with
the iε insertion, you end up with expressions for the propagator that may involve,
for example, εωq or εq2 etc. There’s nothing wrong with that provided that the
overall term is positive when ε is positive. If so, then those expressions can be
rewritten replacing ε by εq2 (or whatever) by ε′ and then replacing limε → 0+

by limε′ → 0+. You might ask why we should go to all that trouble and, in fact,
it’s not necessary. But by convention, various computed expressions such as the
propagator are written with a modification of the form iε rather than something
like iεq2.

Appendix D: Generating functional
We now talk about what happens if we add to the Lagrangian, a term J(t)q(t) Why
do we care? There are two reasons for caring. First, and most important for our
purposes, has to do with a well-known mathematical trick which is summarized by
the phrase ”calculating moments from a generating function”. A second reason
we might want to add to the Lagrangian a term J(t)q(t), is that we might be
interested in a new theory which requires such a term. That would typically be a
theory that describes a system which interacts with an external source J(t).6 Such
theories were of particular interest to Julian Schwinger (who wrote a text called
”Source Theory”) and some other physicists, but is of little consequence – other
than for some interesting mathematical results – to most current work in quantum
field theory.

We focus on the use of the source term to form a generating functional. Here
is the general outline of the trick. Suppose you want to calculate

Q(m,n) =

∫ ∞
0

∫ ∞
0

xmynei[−x
2−y2]dxdy

To do that, define

I(J1, J2) =

∫ ∞
0

∫ ∞
0

ei[−x
2−y2+J1x+J2y]dxdy

The exponent is quadratic so you can easily compute I(J1, J2). Then

Q(m,n) = (−i ∂
∂J1

)m(−i ∂
∂J2

)nI(J1, J2)|Ji=0

6Since J(t) explicitly depends on the time t, such a Lagrangian leads to a Schrodinger-picture
Hamiltonian with an explicit time-dependence. Earlier, I mentioned that in those circumstances,
there are equations which need to be modified so that e−iHt is replaced by the more general
evolution operator U(t). As it turns out, this won’t change the outcomes of any theorems or
calculations we care about.
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The path integral is considerably more complicated-looking because instead
of a 2-dimensional integral over x and y, it is an infinite-dimensional integral over
q(t) for all t. Nevertheless it’s easy to generalize the above example. In the above
trick, replace x by q(t1), y by q(t2), J1 by J(t1) and J2 by J(t2). Then for example

Q(1, 1) =

∫
q(t1)q(t2)e

i[−q(t1)2−q(t2)2]dq(t1)dq(t2)

I(J) =

∫ ∞
0

∫ ∞
0

ei[−q(t1)
2−q(t2))2+J(t1)q(t1)+J(t2)q(t2)]dq(t1)dq(t2)

and
Q(1, 1) = (−i δ

δJ(t1)
)(−i δ

δJ(t2)
)I(J)|J(t)=0

Note that the derivatives are evaluated for J(t) = 0 for all t. The notation δ
δJ(t)

may be unfamiliar. If so, I recommend that you think of this as ∂
∂Ji

and that
you think of

∫
J(t)q(t)dt as

∑
Jiqi. In other words, think of t as an index. Of

course, t is a continuous variable, and an index is generally regarded as discrete.
So unsurprisingly, you end up replacing quantities like δi,j with quantities like
δ(t − t′). All of this can be made rigorous using the theory of distributions. But
I think it will suffice for you to read Kachelriess starting at the paragraph prior
to 2.48 and going through 2.50 where he illustrates how to apply the trick for
time-ordered products.

For the vacuum-to-vacuum time-ordered product in equation (13), the generating-
functional trick leads to

〈0|T{Q(ta)Q(tb)}|0〉 = K ′(−i δ

δJ(ta)
)(−i δ

δJ(tb)
)|J(t)=0

∫
Dq(t)ei(S[q(t)]+J(t)q(t)+iε)

(16)
where as usual, the notation implies that we are taking limε → 0+.
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