Problem setup — Bill Celmaster, October 2020
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@ Z[J]is NOT a simple function of J.
@ BUT define W[J] = -i In(Z[J]).
@ Recall

1 5"
g(X1a"'7Xn) = Z[J”JZO

in6J(xq)...0d(Xn)
and

1 o"
in

GOt %0) = 57035700

iW[J|s=0



Problem statement

@ Is it necessarily true that G(x1, x2) = G(x1, X2)? If not, what
condition would make the two functions equal?

@ For a general V(¢) obeying the above condition, does
G(X1 5 000g) X4) =07?
@ Compare G(x, ..., X4) and G(Xxq, ..., X4).

@ How does the free theory differ from the interacting theory in a
scattering experiment?



Solutions: 2-point functions
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@ Evaluate at J = 0 and multiply by appropriate powers of /.
G(x1,x2) = G(x1, X2) + G(X2)G(x1)

@ Question: When are 1-point functions equal 0? Proposal:
Consider Lagrangians where Z[J] = Z[—J].
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Solutions for even potentials

If V(¢) = V(—¢), then Z[J] = Z[—J]. Proof:
@ Note that L(¢,J) = L(¢,0) + Jo.
© L(¢,J) = L(—¢,—J) since V() = V(—9¢)

@ Recall
fD¢eifd4X£(¢’J)(X)
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Change integration variable to ¢’ = —¢. Then
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4-point functions for even potentials

@ 3-point functions = 0 with same proof as 1-point functions
@ Keep taking derivatives as before and get

g(X‘I , X2, X3, X4) = G(X1 , X2, X3, X4)+
G(X1 ) XZ)G(XSa X4) + G(X'I ) X3)G(X27 X4) + G(X1 ) X4)G(X2a X3)
@ G(x1, X2, X3,X4) = 0in a free theory, but not in a general

theory.

@ In a scattering problem, take Fourier transforms. In the free
theory, particles go ’straight through’.



Figure: 4-point functions
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