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Start with a few 1-D identities. Consider a function f(x). Define the Fourier
transform f̃(k) =

∫
dxeikxf(x). Then it can be proven [inverse Fourier transform

theorem] that f(x) =
∫

dk
2π
e−ikxf̃(k). I’ll also use the notation F [f ](k) ≡ f̃(k).

1. The following identities are commonly used, and you should get used to
them. Prove them.

• δ(x) =
∫

dk
2π
e±ikx. (Hint: Note that for any function h(x),

∫
dxh(x)δ(x) =

h(0).)

Following the hint, we want to show that∫
dxh(x)[

∫
dk

2π
e±ikx] = h(0)

Change the integration order and use the definition of the Fourier trans-
form of h.∫

dxh(x)[

∫
dk

2π
e±ikx] =

∫
dk

2π

∫
dxh(x)e±ikx =

∫
dk

2π
h̃(±k)

Now observe by changing variables to k′ = ±k that the last integral is∫
dk′

2π
h̃(k′). But by the inverse Fourier transform theorem, this is just

h(0) which proves what we set out to show.

• Let f ′ be the function defined as f ′(x) = df
dx

. Then F [f ′](k) =

−ikf̃(k).

From the inverse Fourier transform theorem, write f(x) =
∫

dk
2π
e−ikxf̃(k).
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Then take the derivative df
dx

so

f ′(x) =

∫
dk

2π

de−ikx

dx
f̃(k)

=

∫
dk

2π
e−ikx(−ikf̃(k))

This probably would suffice as a proof, but I’d be inclined to go a bit
further.

F [f ′](k) =
∫
dxeikxf ′(x)

=

∫
dxeikx

∫
dk′

2π
e−ik

′x(−ik′f̃(k′))

=

∫
dk′

∫
dx

2π
eix(k−k

′)(−ik′f̃(k′))

=

∫
δ(k − k′)(−ik′f̃(k′))

= −ikf̃(k)

The second to last line employs a delta-function identity very similar
to what was demonstrated in the previous exercise (simply substitute
x for k and vice versa).

• Let g be the function defined as g(x) =
∑N

n=1 an
dnf(x)
dxn

. ThenF [g](k) =∑N
n=1 an(−ik)nf̃(k).

I’ll show this for a quadratic function g(x) = a0 + a1
df
dx

+ a2
d2f
dx2

. This
should suffice to make the point but if you wanted a formal mathemat-
ical proof for general polynomials, you could proceed by induction.

g′(x) =

∫
dk

2π
[a0 + a1

de−ikx

dx
+ a2

d2e−ikx

dx2
]f̃(k)

=

∫
dk

2π
e−ikx([a0 + a1(−ik) + a2(−ik)2]f̃(k))

2. Let d
2f(x)
dx2

+m2f(x) = K(x). Find f̃(k) in terms of K̃(k).

Take the Fourier transform of both sides, using above identities.

(−ik)2f̃(k) +m2f̃(k) = K̃(k)
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so
(−k2 +m2)f̃(k) = K̃(k)

and

f̃(k) = − K̃(k)

k2 −m2

3. Let J(x) and D(x) be two functions with Fourier transforms J̃(k) and
D̃(k). Then define I[J ] =

∫
dxdx′J(x)D(x − x′)J(x′). Show that I[J ] =∫

dk
2π
J̃∗(k)D̃(k)J̃(k) where J̃∗ is the conjugate of J̃ .

The proof proceeds by substituting, in the dxdx′ integrand, the (inverse)
Fourier transforms of J and D, then shifting orders of integration and judi-
ciously employing the delta-function identity derived above.∫

dxdx′J(x)D(x− x′)J(x′)

=

∫
dxdx′

∫
dk

2π
e−ikxJ̃(k)

∫
dk′

2π
e−ik

′(x−x′)D̃(k′)

∫
dk′′

2π
e−ik

′′x′ J̃(k′′)

=

∫
dk

2π

∫
dk′′

2π

∫
dxe−ikx

∫
dk′

2π

∫
dx′e−ik

′(x−x′)e−ik
′′x′ J̃(k)D̃(k′)J̃(k′′)

=

∫
dk

2π

∫
dk′′

2π

∫
dxe−ikx

∫
dk′e−ik

′x

∫
dx′

2π
e−ix

′(k′−k′′)J̃(k)D̃(k′)J̃(k′′)

=

∫
dk

2π

∫
dk′′

2π

∫
dxe−ikx

∫
dk′e−ik

′xδ(k′ − k′′)J̃(k)D̃(k′)J̃(k′′)

=

∫
dk

2π

∫
dk′′

2π

∫
dxe−ikxe−ik

′′xJ̃(k)D̃(k′′)J̃(k′′)

=

∫
dk

2π

∫
dk′′

∫
dx

2π
e−ix(k+k

′′)J̃(k)D̃(k′′)J̃(k′′)

=

∫
dk

2π

∫
dk′′δ(k + k′′)J̃(k)D̃(k′′)J̃(k′′)

=

∫
dk

2π
J̃(k)D̃(−k)J̃(−k)

=

∫
dk

2π
J̃(−k)D̃(k)J̃(k)

where the last line comes from changing the integration variable from k to
−k. Since J(x) is real, J̃(−k) = J̃∗(k). This follows from

J̃(−k) =
∫
dxei(−k)xJ(x) =

∫
dx[eikx]∗J(x) = [

∫
dxeikxJ(x)]∗ = J̃∗(k)
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Next consider the 2-D Minkowski space with dot product defined by a · b =
a0b0 − a1b1 for any 2D vectors a and b. Let x and k be 2D vectors. The 2D
Fourier transform is given by f̃(k) =

∫
d2xeik·xf(x). It can be proven that f(x) =∫

d2k
(2π)2

e−ik·xf̃(k).

1. Generalize the identities of exercise 1 to 2D. (You needn’t prove them if you
feel comfortable simply stating them.)

I’ll simply state the generalizations. Let me know if you want help proving
them.

• δ(x1, x2) =
∫

dk1dk2
(2π)2

eik·x

• F [∂f(x1,x2)
∂xµ

](k1, k2) = −ikµf̃(k1, k2) where µ is either 1 or 2.

• It’s a bit messy to write down the most general thing, but the idea
is easily illustrated with g(x1, x2) = ∂2f(x1,x2)

∂x1∂x2
. Then F [g](k1, k2) =

(−ik1)(−ik2)f̃(k1, k2) = −k1k2f̃(k1, k2).

2. Consider the function g(x) = ∂20f(x) − ∂21f(x) + m2f(x). Find g̃(k) in
terms of f̃(k). Suppose for all values of k that f̃(k) 6= 0 . Find the values
of k so that g̃(k) = 0 and express those values by giving k0 in terms of k1
and m. These are the so-called mass-shell values of k.

Taking the Fourier transform of both sides, we obtain (similarly to what we
did in exercise 2 of the 1D case ) g̃(k0, k1) = (−k20 + k21 + m2)f̃(k0, k1).
Solve −k20 + k21 + m2 = 0 to get k0 =

√
k21 +m2 which is the familiar

dispersion equation.
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