Solutions to Exercises for Kachelriess pp 37-40

Bill Celmaster

September 10, 2020

Start with a few 1-D identities. Consider a function f(x). Define the Fourier transform $\tilde{f}(k) = \int dx e^{ikx} f(x)$. Then it can be proven [inverse Fourier transform theorem] that $f(x) = \int \frac{dk}{2\pi} e^{-ikx} \tilde{f}(k)$. I'll also use the notation $\mathcal{F}[f](k) \equiv \tilde{f}(k)$.

- 1. The following identities are commonly used, and you should get used to them. Prove them.
 - $\delta(x)=\int \frac{dk}{2\pi}e^{\pm ikx}$. (Hint: Note that for any function $h(x),\int dx h(x)\delta(x)=h(0)$.)

Following the hint, we want to show that

$$\int dx h(x) \left[\int \frac{dk}{2\pi} e^{\pm ikx} \right] = h(0)$$

Change the integration order and use the definition of the Fourier transform of h.

$$\int dx h(x) \left[\int \frac{dk}{2\pi} e^{\pm ikx} \right] = \int \frac{dk}{2\pi} \int dx h(x) e^{\pm ikx} = \int \frac{dk}{2\pi} \tilde{h}(\pm k)$$

Now observe by changing variables to $k'=\pm k$ that the last integral is $\int \frac{dk'}{2\pi} \tilde{h}(k')$. But by the inverse Fourier transform theorem, this is just h(0) which proves what we set out to show.

• Let f' be the function defined as $f'(x) = \frac{df}{dx}$. Then $\mathcal{F}[f'](k) = -ik\tilde{f}(k)$.

From the inverse Fourier transform theorem, write $f(x) = \int \frac{dk}{2\pi} e^{-ikx} \tilde{f}(k)$.

Then take the derivative $\frac{df}{dx}$ so

$$f'(x) = \int \frac{dk}{2\pi} \frac{de^{-ikx}}{dx} \tilde{f}(k)$$
$$= \int \frac{dk}{2\pi} e^{-ikx} (-ik\tilde{f}(k))$$

This probably would suffice as a proof, but I'd be inclined to go a bit further.

$$\mathcal{F}[f'](k) = \int dx e^{ikx} f'(x)$$

$$= \int dx e^{ikx} \int \frac{dk'}{2\pi} e^{-ik'x} (-ik'\tilde{f}(k'))$$

$$= \int dk' \int \frac{dx}{2\pi} e^{ix(k-k')} (-ik'\tilde{f}(k'))$$

$$= \int \delta(k-k') (-ik'\tilde{f}(k'))$$

$$= -ik\tilde{f}(k)$$

The second to last line employs a delta-function identity very similar to what was demonstrated in the previous exercise (simply substitute x for k and vice versa).

• Let g be the function defined as $g(x) = \sum_{n=1}^{N} a_n \frac{d^n f(x)}{dx^n}$. Then $\mathcal{F}[g](k) = \sum_{n=1}^{N} a_n (-ik)^n \tilde{f}(k)$.

I'll show this for a quadratic function $g(x) = a_0 + a_1 \frac{df}{dx} + a_2 \frac{d^2f}{dx^2}$. This should suffice to make the point but if you wanted a formal mathematical proof for general polynomials, you could proceed by induction.

$$g'(x) = \int \frac{dk}{2\pi} [a_0 + a_1 \frac{de^{-ikx}}{dx} + a_2 \frac{d^2 e^{-ikx}}{dx^2}] \tilde{f}(k)$$
$$= \int \frac{dk}{2\pi} e^{-ikx} ([a_0 + a_1(-ik) + a_2(-ik)^2] \tilde{f}(k))$$

2. Let $\frac{d^2f(x)}{dx^2} + m^2f(x) = K(x)$. Find $\tilde{f}(k)$ in terms of $\tilde{K}(k)$.

Take the Fourier transform of both sides, using above identities.

$$(-ik)^2 \tilde{f}(k) + m^2 \tilde{f}(k) = \tilde{K}(k)$$

so

$$(-k^2 + m^2)\tilde{f}(k) = \tilde{K}(k)$$

and

$$\tilde{f}(k) = -\frac{\tilde{K}(k)}{k^2 - m^2}$$

3. Let J(x) and D(x) be two functions with Fourier transforms $\tilde{J}(k)$ and $\tilde{D}(k)$. Then define $\mathcal{I}[J] = \int dx dx' J(x) D(x-x') J(x')$. Show that $\mathcal{I}[J] = \int \frac{dk}{2\pi} \tilde{J}^*(k) \tilde{D}(k) \tilde{J}(k)$ where \tilde{J}^* is the conjugate of \tilde{J} .

The proof proceeds by substituting, in the dxdx' integrand, the (inverse) Fourier transforms of J and D, then shifting orders of integration and judiciously employing the delta-function identity derived above.

$$\int dx dx' J(x) D(x - x') J(x')$$

$$= \int dx dx' \int \frac{dk}{2\pi} e^{-ikx} \tilde{J}(k) \int \frac{dk'}{2\pi} e^{-ik'(x-x')} \tilde{D}(k') \int \frac{dk''}{2\pi} e^{-ik''x'} \tilde{J}(k'')$$

$$= \int \frac{dk}{2\pi} \int \frac{dk''}{2\pi} \int dx e^{-ikx} \int \frac{dk'}{2\pi} \int dx' e^{-ik'(x-x')} e^{-ik''x'} \tilde{J}(k) \tilde{D}(k') \tilde{J}(k'')$$

$$= \int \frac{dk}{2\pi} \int \frac{dk''}{2\pi} \int dx e^{-ikx} \int dk' e^{-ik'x} \int \frac{dx'}{2\pi} e^{-ix'(k'-k'')} \tilde{J}(k) \tilde{D}(k') \tilde{J}(k'')$$

$$= \int \frac{dk}{2\pi} \int \frac{dk''}{2\pi} \int dx e^{-ikx} \int dk' e^{-ik'x} \delta(k' - k'') \tilde{J}(k) \tilde{D}(k') \tilde{J}(k'')$$

$$= \int \frac{dk}{2\pi} \int dk'' \int dx e^{-ikx} e^{-ik''x} \tilde{J}(k) \tilde{D}(k'') \tilde{J}(k'')$$

$$= \int \frac{dk}{2\pi} \int dk'' \int \frac{dx}{2\pi} e^{-ix(k+k'')} \tilde{J}(k) \tilde{D}(k'') \tilde{J}(k'')$$

$$= \int \frac{dk}{2\pi} \int dk'' \delta(k + k'') \tilde{J}(k) \tilde{D}(k'') \tilde{J}(k'')$$

$$= \int \frac{dk}{2\pi} \tilde{J}(k) \tilde{D}(-k) \tilde{J}(-k)$$

$$= \int \frac{dk}{2\pi} \tilde{J}(-k) \tilde{D}(k) \tilde{J}(k)$$

where the last line comes from changing the integration variable from k to -k. Since J(x) is real, $\tilde{J}(-k) = \tilde{J}^*(k)$. This follows from

$$\tilde{J}(-k) = \int dx e^{i(-k)x} J(x) = \int dx [e^{ikx}]^* J(x) = [\int dx e^{ikx} J(x)]^* = \tilde{J}^*(k)$$

Next consider the 2-D Minkowski space with dot product defined by $a \cdot b = a_0b_0 - a_1b_1$ for any 2D vectors a and b. Let x and k be 2D vectors. The 2D Fourier transform is given by $\tilde{f}(k) = \int d^2x e^{ik\cdot x} f(x)$. It can be proven that $f(x) = \int \frac{d^2k}{(2\pi)^2} e^{-ik\cdot x} \tilde{f}(k)$.

1. Generalize the identities of exercise 1 to 2D. (You needn't prove them if you feel comfortable simply stating them.)

I'll simply state the generalizations. Let me know if you want help proving them.

- $\delta(x_1, x_2) = \int \frac{dk_1 dk_2}{(2\pi)^2} e^{ik \cdot x}$
- $\mathcal{F}[\frac{\partial f(x_1,x_2)}{\partial x_\mu}](k_1,k_2) = -ik_\mu \tilde{f}(k_1,k_2)$ where μ is either 1 or 2.
- It's a bit messy to write down the most general thing, but the idea is easily illustrated with $g(x_1,x_2)=\frac{\partial^2 f(x_1,x_2)}{\partial x_1\partial x_2}$. Then $\mathcal{F}[g](k_1,k_2)=(-ik_1)(-ik_2)\tilde{f}(k_1,k_2)=-k_1k_2\tilde{f}(k_1,k_2)$.
- 2. Consider the function $g(x)=\partial_0^2 f(x)-\partial_1^2 f(x)+m^2 f(x)$. Find $\tilde{g}(k)$ in terms of $\tilde{f}(k)$. Suppose for all values of k that $\tilde{f}(k)\neq 0$. Find the values of k so that $\tilde{g}(k)=0$ and express those values by giving k_0 in terms of k_1 and m. These are the so-called mass-shell values of k.

Taking the Fourier transform of both sides, we obtain (similarly to what we did in exercise 2 of the 1D case) $\tilde{g}(k_0,k_1)=(-k_0^2+k_1^2+m^2)\tilde{f}(k_0,k_1)$. Solve $-k_0^2+k_1^2+m^2=0$ to get $k_0=\sqrt{k_1^2+m^2}$ which is the familiar dispersion equation.