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For this summary, I will concentrate on a simple toy field theory with the
action

S[λ, J, φ] =

∫
d4x(

1

2
∂µφ∂

µφ− 1

2
m2φ2 + Jφ− λφ3) + iε (1)

In all expressions below, we will implicitly be taking lime→0+ .

1 Summary 1st Pass

1. Cross-section and scattering ←→ S-matrix The S-matrix should not
be confused with the action S[λ, J, φ]

2. S-matrix ←→ Green’s functions

3. (starting Kachelreiss) Green’s functions ←→ path integrals

4. Exactly computable free Green’s functions ←→ path integrals for free
Lagrangian

5. Full Green’s functions ←→ perturbation expansion of path integrals for
full Lagrangian, using free Green’s functions

6. Perturbation expansion←→ expressed in schematics (Feynman diagrams)

7. (new stuff) Fourier transform → S-matrix → experiment.

2 Summary More Details

1. The simplest scattering experiment involves two colliding identical par-
ticles.
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Ingoing particles

pin1 = (E, ~p)

pin2 = (E,−~p)

Outgoing particles

pout1 = (E ′, ~p′)

pout2 = (E ′,−~p′)

Question: What is the probability amplitude that if you start with the
above ingoing particles as shown, then you’ll end up with the above
outgoing particles?

Quantum mechanics answer is

〈pout1 , pout2 |S|pin1 , pin2 〉

where S is the operator propagating in to out states. S is called the S
matrix. Its magnitude-squared is also proportional to the (differential)
cross section.

2. LSZ Theorem example. Assume that the initial and final particles
have mass m and are obtained from the quantum field φ(x). Then
(non-trivial proof) !!!
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〈pout1 , pout2 |S|pin1 , pin2 〉 =

(−(pout1 )2 +m2)(−(pout2 )2 +m2)(−(pin1 )2 +m2)(−(pin2 )2 +m2)

[i

∫
d4x1e

−ipin1 ·x1 ][i

∫
d4x2e

−ipin2 ·x2 ][i

∫
d4x3e

+ipout1 ·x3 ][i

∫
d4x4e

+ipout2 ·x4 ]

Gλ(x1, x2, x3, x4)
(2)

where Gλ is a Green’s function for the toy theory above.

This LSZ example is easily generalized to more ingoing and outgo-
ing particles with multiple masses and associated with other quantum
fields.

3.

Gλ(x1, ..., xn) =
1

Z[λ, 0]

∫
Dφφ(x1)...φ(xn)eiS[λ,0,φ]

= (−i)n 1

Z[λ, 0]

δnZ[λ, J ]

δJ(x1)...δJ(xn)
|J(x)=0

(3)

where

Z[λ, J ] = N

∫
DφeiS[λ,J,φ] (4)

4. From Kachelreiss

Z[0, J ] = e−
1
2
i
∫
d4yd4y′J(y)∆F (y−y′)J(y′) (5)

where

∆F (x− x′) =

∫
d4k

(2π)4

e−ik(x−x′)

k2 −m2 + iε
(6)

All free Green functions G0(x1, ..., xn) are obtained by taking deriva-
tives with respect to J and then setting J = 0.

5. We’re ready to compute the Green’s function of the full theory where
λ 6= 0. Recall equation (3) and expand the action S[λ, J, φ] from equa-
tion (1).

Gλ(x1, ..., xn) =
1

Z[λ, 0]

∫
DΦφ(x1)...φ(xn)ei

∫
d4x( 1

2
∂µφ∂µφ− 1

2
m2φ2−λφ3)+iε

=
1

Z[λ, 0]

∫
Dφφ(x1)...φ(xn)eiS[0,0,φ]e−iλ

∫
d4xφ3

(7)
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Suppose λ is small, so that we can Taylor-expand the term in red. The
Taylor expansion involves products of φ’s with the exponential of a
free (λ = 0) action. All of these are Green functions G0 and can be
computed analytically

Gλ(x1, ..., xn)

=
1

Z[λ, 0]

∫
Dφφ(x1)...φ(xn)eiS[0,0,φ](1−iλ

∫
d4xφ(x)3 − λ2

2

∫
d4xφ(x)3

∫
d4x′φ(x′)3 + ...)

= G0(x1, ..., xn)−iλ
∫
d4xG0(x, x, x, x1, ..., xn)

−λ
2

2

∫
d4xd4x′G0(x, x, x, x′, x′, x′, x1, ..., xn) + ...

(8)
Recall that all free Green’s functions are obtained by taking derivatives
with respect to J of Z[0, J ] given in equation (5) and then setting
J = 0. For example we obtain G0(x1) by taking one derivative:

δ

δJ(x1)
(Z[0, J ]) = Z[0, J ][−i

∫
d4yJ(y)∆F (y − x1)] (9)

6. These derivative expressions rapidly become messy to look at. For-
tunately, they can be expressed with schematics known as Feynman
diagrams.

4



𝑥1 J
−𝑖 න𝑑4𝑦 𝐽 𝑦 ∆𝐹(𝑦 −𝑥1)

𝑥1 𝑥2
−𝑖 ∆𝐹(𝑥2−𝑥1)

𝑥1 J

DIAGRAM RULES

𝛿

𝛿𝐽𝑥2

𝛿

𝛿𝐽𝑥2

Z[0,J] = 
𝑥2 J

=
𝑥1 𝑥2

𝛿

𝛿𝐽𝑥2 𝑥1 𝑥2
=      0

Z[0,J]

When we set J=0, all lines with ‘J’ are set to 0, and Z is set to Z[0,0]

Examples

𝑥1 J

𝛿

𝛿𝐽𝑥2
Z[0,J]  

=   (
𝑥1 𝑥2

+
𝑥1 J 𝑥2 J

) Z[0,J]

𝑥1 J

𝛿

𝛿𝐽𝑥1
Z[0,J]  

=   (
𝑥1

+
𝑥1

J

J

) Z[0,J]

𝛿

𝛿𝐽𝑥1
Z[0,J]    =   

𝛿

𝛿𝐽𝑥1

Notice what happens when 
both J indices are the same 

𝛿

𝛿𝐽𝑥1

𝛿

𝛿𝐽𝑥1
Z[0,J]|𝐽=0 =   

𝑥1
Z[0,0]  When we set J=0 only the bubble and Z[0,0] are left
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More calculus

𝑥1 J 𝑥2 J

𝛿

𝛿𝐽𝑥

𝛿

𝛿𝐽𝑦 𝑥𝑥1 𝑦𝑥2 𝑦𝑥1 𝑥𝑥2
= +

J

J

𝑥

J

𝛿

𝛿𝐽𝑥1
=      3 J

𝑥

J

𝑥1

J
𝑥

J

𝑥1

𝛿

𝛿𝐽𝑥2
3 =      6

𝑥

J

𝑥1

𝑥2

J

𝑥

J

𝛿

𝛿𝐽𝑥1

𝛿

𝛿𝐽𝑥2

𝛿

𝛿𝐽𝑥3 𝑥

𝑥1

𝑥2=      6

𝑥3

Note the pre-factor 6 = 3!
J

7. Now we’re ready to compute an actual S-matrix element (aka cross-
section). Recall equation (8) where we showed the perturbation expan-
sion through order λ2. Apply this to the Green function that appears
in the LSZ equation (2). It turns out the only term of interest to us is
the one proportional to λ2 .

Gλ(x1, x2, x3, x4) = ...−λ
2

2

∫
d4xd4x′G0(x, x, x, x′, x′, x′, x1, x2, x3, x4)+...

(10)
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x y

𝑥1

𝑥2

𝑥3

𝑥4

𝐷𝑖𝑎𝑔𝑟𝑎𝑚 = −𝑖 36 ∆𝐹(𝑥1−𝑥) ∆𝐹(𝑥2−𝑥) ∆𝐹(𝑥 − 𝑦) ∆𝐹(𝑦 − 𝑥3) ∆𝐹(𝑦 − 𝑥4)

So    𝐺λ(𝑥1, 𝑥2, 𝑥3 , 𝑥4) = … i
λ2

2
𝑑4𝑥𝑑4𝑦׬36 ∆𝐹(𝑥1−𝑥) ∆𝐹(𝑥2−𝑥) ∆𝐹(𝑥 − 𝑦) ∆𝐹(𝑦 − 𝑥3) ∆𝐹(𝑦 − 𝑥4)

3 New Stuff

Now we’re ready to substitute the Feynman propagator from equation (6)
and also to invoke the LSZ theorem of equation (2).

� An important Fourier transform identity is

1

(2π)4

∫
d4x

∫
d4keipxe−ik(x−y)f(k) = f(p)eipy (11)

so∫
d4xeipx∆F (x− y) =

∫
d4xeipx

(
1

(2π)4

)∫
d4k

e−ik(x−y)

k2 −m2 + iε

=
eipy

p2 −m2 + iε

(12)

� Recall LSZ

〈pout1 , pout2 |S|pin1 , pin2 〉 =

(−(pout1 )2 +m2)(−(pout2 )2 +m2)(−(pin1 )2 +m2)(−(pin2 )2 +m2)

[i

∫
d4x1e

−ipin1 ·x1 ][i

∫
d4x2e

−ipin2 ·x2 ][i

∫
d4x3e

+ipout1 ·x3 ][i

∫
d4x4e

+ipout2 ·x4 ]

Gλ(x1, x2, x3, x4)
(13)
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Temporarily ignore the terms in blue and compute the remaining terms
by using Gλ from the diagram, so the last 3 lines of LSZ are

[i

∫
d4x1e

−ipin1 ·x1 ][i

∫
d4x2e

−ipin2 ·x2 ][i

∫
d4x3e

+ipout1 ·x3 ][i

∫
d4x4e

+ipout2 ·x4 ]Gλ(x1, x2, x3, x4) =

...+ 18iλ2

∫ ∫ ∫ ∫
d4x1d

4x2d
4x3d

4x4d
4xd4y

e−ip
in
1 ·x1∆F (x1 − x)e−ip

in
2 ·x2∆F (x2 − x)∆F (x− y)e+ipout1 ·x3∆F (y − x3)e+ipout2 ·x4∆F (y − x4)

= ...+ 18iλ2

∫ ∫
d4xd4y

e−i(p
in
1 +pin2 )·x−(pout1 +pout2 )·y)∆F (x− y)

(pin1 )2 −m2)((pin2 )2 −m2)((pout1 )2 −m2)((pout2 )2 −m2)
=

...+ 18iλ2(2π)4 δ(pin1 + pin2 − pout1 − pout2 )

((pin1 + pin2 )2 −m2)((pin1 )2 −m2)((pin2 )2 −m2)((pout1 )2 −m2)((pout2 )2 −m2)
(14)

Note that we set the limit ε→ 0.

To complete the RHS of the LSZ computation, we must multiply by the
terms in blue. But compare these to the last line denominator terms
in blue. THEY CANCEL!!!!!! This cancellation is a general feature of
LSZ. So finally, using LSZ, we have

〈pout1 , pout2 |S|pin1 , pin2 〉 = ...+ 18iλ2(2π)4 δ(p
in
1 + pin2 − pout1 − pout2 )

((pin1 + pin2 )2 −m2)
(15)

Notice that the numerator in the last line above is the energy-momentum
conserving delta function.

� Recall that for a head-on collision where both particles have the same
speed, that

pin1 = (E, ~p)

pin2 = (E,−~p)
(16)

Then (pin1 + pin2 )2 ≡ (pin1 + pin2 ) · (pin1 + pin2 ) = 4E2.

Plug this into the S-matrix equation above (equation (15)) to get

〈pout1 , pout2 |S|pin1 , pin2 〉 = ...+ 18iλ2(2π)4 δ(p
in
1 + pin2 − pout1 − pout2 )

4E2 −m2
(17)

� What is this scattering element telling us? This gives us a prediction
for what the likelihood of scattering is, depending on the incoming
energies. The result depends on 2 parameters λ and m.
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� Those parameters have to be measured! So we need at least two mea-
surements at two different energies. After that, we can predict the
rest. If we expanded to higher orders of perturbation theory,
we would encounter divergent k integrals. We deal with this in
several steps:

– First cut off the integral at some large value of k. We typically
characterize this value by Λ. Then we make a prediction depen-
dent on λ and m (and also Λ)

– Once again, we have to determine λ and m from experimental
measurements. But this time, the result we get will depend on Λ
– an artificial parameter. Now when we make new measurements,
we can predict the value for the S-matrix (since the parameters
have been determined).

– Of course, our predictions depend on Λ. But magically, as we make
Λ larger and larger (remember, we really want it to be infinite)
our predictions converge.

– And therefore, we have managed to tame the divergences.

This entire procedure is known as renormalization, and the intermedi-
ate step where we decide to cut off the integral is known as a regular-
ization method.

� Remember that the mass m is the mass of the particle associated with
our field φ way back at the beginning in the action given by equation
(1). If 2E = m then the denominator would be 0 and the S-matrix
element would be infinite.

However, E is the energy of an incoming particle and this energy cannot
be less than the particle’s rest mass energy m (or in more familiar form,
mc2, when we don’t set c = 1). As a result we can never have 2E = m.

Nevertheless, in more complicated field theories, the incoming particles
(fields) can be different than the intermediate particle (i.e., there is a
cubic term in the action involving two fields of one type, and one field
of another). When that happens, the denominator can indeed become
0 (in practice, there are some higher order perturbative corrections that
move things slightly away from 0 so the S-matrix element isn’t really
infinite).

Here is what the graph looks like in an actual experiment. The x-
axis shows 2E, otherwise known as the centre-of-mass. The y-axis is
proportional to magnitude-squared of the S-matrix, otherwise known
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as the cross-section. A sharp peak was observed at 2E = 91GeV , and
this was one of the ways that the Z particle (whose mass is 91 GeV)
was discovered.
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