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During our meeting on Monday December 28, there were several questions
that came up which I noted. Perhaps there are more I’ve forgotten about,
but in the meantime, here are some responses. Others of you may have things
you want to add.

1 Is equation 12 correct?

To remind you, equation (12) is the transformation

t′ = t

x′(x, y) = x cos θ + y sin θ

y′(x, y) = −x sin θ + y cos θ

φ′1(t
′, x′, y′) = cos(θ)φ1(t, x, y)− sin(θ)φ2(t, x, y)

φ′2(t
′, x′, y′) = sin(θ)φ1(t, x, y) + cos(θ)φ2(t, x, y)

The question is whether, on the RHS of the red lines, the arguments are
really t, x, y or should they be t′, x′, y′?

The answer is that the equation is correct as is. Namely, the arguments
really are t, x, y. I believe that José explained this during our meeting, but for
those who want to see it written down, look at Lancaster equation 9.46. The
form of the equation looks a bit different but the point is that the argument(s)
of φ on the LHS, are related to those on the RHS by the transformation
x = R−1(θ)x′.
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2 How is the stuff we learned in QM about

angular momentum related to the stuff we

are learning about field transformations?

First of all, let’s concentrate in QM on wave functions of the form

ψ(x, y, z).

(Elsewhere I use the symbol |ψ〉 but too much information is missing with
that notation.) These wave functions form a Hilbert space under the usual
addition operations and with an inner product between the functions ψ(x, y, z)
and γ(x, y, z) of

∫
d3xψ∗(x)γ(x).

Then rotations are represented by operations on the wavefunction and
infinitesimal rotations can be expanded in terms of infinitesimal generators.
The Hilbert space of wavefunctions is infinite-dimensional, and the trans-
formations are also. For now, consider the infinitesimal generator Jz which
generates rotations around the z-axis. Mostly physicists are lazy with nota-
tion, so in the context of wavefunctions we also write the representation of
Jz as Jz. To be concrete, the transformation rule using this notation is

(Jzψ)(x, y, z) = −i(x ∂
∂y
− y ∂

∂x
)ψ(x, y, z) (1)

where as usual I suppress the Planck constant ~ and the rotations are around
the origin x = 0.

By convention, since the wavefunction in this example has only one com-
ponent, people use the symbol Lz rather than Jz but to avoid the proliferation
of notation, I’ll stick (for now) to Jz.

If you would like to think of all this using matrix notation, then – since
the wavefunctions form an infinite-dimensional space – the Jz matrix would
be an infinite-dimensional matrix and the rotations would also be represented
by infinite-dimensional matrices.

However, it turns out that these “matrices” can be written in block form.
That is, the representation of equation (1) is reducible.

What exactly does that mean in practice? In general, the way we express
vectors in a vector-space, is to expand them in a basis. E.g.

v = α1e1 + α2e2 + ...+ αNeN.

When the space is infinite-dimensional, N =∞. The αi are “the coefficients
of the vector v with respect to the basis ei. When the vector space is a
Hilbert space and thus has an inner product, the basis vectors can be chosen
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to be orthonormal with respect to the inner product – i.e., in Dirac notation
we write 〈ei|ej〉 = δij.

When a matrix operates on a vector, its effect is to change the coefficients
αi to a new set of coefficients βi. For example

M


α1

α2

α3

α4

 =


β1
β2
β3
β4

 (2)

Now let’s say that M can be written in block form (to be mathematically
accurate we should say “can be written in block form relative to the basis
ei”.) Then M would have, for example, the form

M =


a11 0 0 0
0 b11 b12 b13
0 b21 b22 b23
0 b31 b32 b33

 (3)

Suppose we apply this matrix M to a vector whose last 3 components are 0:
α
0
0
0


The result would be 

a11α
0
0
0


which is again a vector of the same form. In the same way, if M were applied
to a vector whose first component is 0, the result would again be a vector
whose first component is 0.

M


0
α1

α2

α3

 =


0

b11α1 + b12α2 + b13α3

b21α1 + b22α2 + b23α3

b31α1 + b32α2 + b33α3

 (4)

Why is this useful to know? If our matrices form a representation of the
rotations, it immediately follows (assuming the same block form for all rota-
tions) that each block also forms a representation of the rotations. Namely,
let

R(θ) = R(θ2)R(θ1)
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and let U(θ) be a representation (i.e.U(θ) = U(θ2)U(θ1)) in block form

U(θ) =

(
U(1)(θ) 0

0 U3(θ)

)
(5)

where U(1)(θ) is a 1 x 1 matrix and U3(θ) is a 3 x 3 matrix. Then, since U
is a representation it’s easy to show that(

U(1)(θ) 0
0 U3(θ)

)
= U(θ2)U(θ1) =

(
U(1)(θ2)U(1)(θ1) 0

0 U3(θ2)U3(θ1)

)
(6)

From this we see that U1 forms a 1 x 1 representation of the rotation group
and U3 forms a 3 x 3 representation of the rotation group. If no similar-
ity transformation can put U3 into block form, then both U1 and U3 are
irreducible representations.

To summarize: If a representation can be put into block form, then it
is sufficient, in order to ‘construct’ the entire representation, that we find
the individual representations for the blocks. It suffices to focus only on the
representations of the infinitesimal generators. It can be demonstrated that
the generator Jz of equation (1), as well as generators Jy and Jx can all
be written in (the same) block form (relative to a certain basis) where each
block is finite.

How do we find a basis that puts the generators in block form? The

idea is this: In order that U(θ) can transform a vector
(
0 α1 α2 α3

)T
to another vector of the same form, the operation of U(θ) on the basis
vectors e2, e3 and e4 must result in combinations of the same three basis
vectors. Recall that each basis vector must be a wave-function and that all
three wave-functions must be orthornormal. If we can find three such basis
vectors, then we will have succeeded in constructing a 3 x 3 representation
of the rotation group. Indeed we can do this, and those 3 vectors turn out
to be the spherical harmonics Y −11 , Y 0

1 and Y 1
1 . These are usually expressed

in terms of spherical coordinates but, expressing spherical coordinates as
functions of cartesian coordinates we get

Y −11 (θ, φ) =
1

2

√
3

2π

x− iy
r

Y 0
1 (θ, φ) =

1

2

√
3

π

z

r

Y 1
1 (θ, φ) =

1

2

√
3

2π

x+ iy

r

(7)
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where r =
√
x2 + y2 + z2.

These are the well-known l = 1 orbitals. Quantum mechanics texts usu-
ally go through a complete derivation of representations, but that is for a
later time.
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