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I looked at Zee’s problems for section II.3, and believe these may require
a lot of work. Here is a multi-part easier exercise.

1 Exercise on representations

First recall the following from the earlier notes on rotational symmetries.
The 2x2 Pauli matrices are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1)

and write σ as the 3-tuple (σ1, σ2, σ3).
Then the 2 x 2 matrix representing (up to a phase) a rotation of angle

θ ≡ |θ| around an axis in the direction of the 3-vector θ is

R(θ) = ei
σ
2
·θ =

(
cos θ

2
+ iθ̂3 sin θ

2
(iθ̂1 + θ̂2) sin θ

2

(iθ̂1 − θ̂2) sin θ
2

cos θ
2
− iθ̂3 sin θ

2

)
(2)

where the notation θ̂i denotes θi
θ

.
In this expression, the 2D representation (i.e. j = 1

2
) of the rotation

generator Ji, is σi
2

.

1.1 Part A

Recall that we defined J±i = 1
2
(Ji± iKi) and that both J+i and J−i generate

the rotation group. Start by considering the Lorentz-group representation
denoted by (0, 1

2
). Again, recall that this notation means “J− is in the 0

(scalar) representation (i.e., J−i are identity matrices)” and “J+ is in the
spin-1

2
(i.e. 2D) representation”.
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� Express J+3 as a 2 x 2 matrix. (From now on, let’s use the terms J±i
to refer to the 2 x 2 representations of the Lie Algebra and not
to the abstract terms of the Lie Algebra.)

� Let ν be a 2-vector defined by ν =

(
ν1
ν2

)
. Then compute the new

2-vector ν ′ = J+3ν.

This is not a trick question. It’s just a warm-up to get you used to
actually doing the matrix operations.

� Next, express J−3 as a 2 x 2 matrix operating on 2-vectors ν. Hint: J−
is in the 0 representation, meaning that it doesn’t transform vectors.

� We’re interested in rotations and boosts, and those are generated by Ji
and Ki. Find J3 and K3 from our definitions of J±3.

� Compute the vector J3ν.

� Compute R(θ)ν using eq.(2), where θ is the rotation by θ around the
z-axis, i.e., θ = (0, 0, θ).

� In the last set of notes about Lorentz symmetries, we related rotations
to the generators Ji and we also related boosts to the generators Ki

with the expression, for example, B3(β) = eβK3 . Compute B3(β)ν for
small values of β by expanding the Taylor series through the first order
in β.

1.2 Part B

This is going to be just like Part A above except that we’ll look at the
representation denoted by (1

2
, 0). Now the roles of J− and J+ are reversed.

� Using the same methods as in Part A, compute R(θ)ν where θ is the
rotation by θ around the z-axis, i.e., θ = (0, 0, θ).

� Compute B3(β)ν for small values of β by expanding the Taylor series
through the first order in β.

� Just for fun. Notice that boosts along the z-axis have almost the same
form of exponential but without “i”. In particular, we have Bz(β) =

ei
σ3(−iβ)

2 . This looks just like a rotation except that we’ve replaced θ by
−iβ. Look at eq. (2) and for simplicity, just concentrate on rotations
around the z-axis. Then to find boosts along the z-axis, replace θ
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by −iβ. In case you don’t remember it, cos(−iβ) = cosh(β). Now
compute B3(β)ν for general values of β.

What you should discover, is that rotations transform the same in the two
representations (0, 1

2
) and (1

2
, 0) but boosts transform differently.

2 Constructing a Lorentz-invariant bilinear

quantity

The goal here, is to explore ways to construct a Lorentz-invariant quantity
out of a bilinear form involving the vector ν and its conjugate ν∗. We’ll
concentrate exclusively on bilinears of the form S =

∑
ij ν
∗iMijν

j. In the
rest of this exercise, I’ll leave out the summation sign and instead, use the
notation that repeated indices are summed over.

� Let M =

(
1 0
0 1

)
. Then S = ν∗iνi. Apply to ν a rotation by θ around

the z-axis and show that S does not change.

� Next, apply a boost around the z-axis and show that S changes. You
can do this either with infinitesimal boosts (so expand to order β)
or with finite boosts. Notice that your result will depend on
whether you use the boost obtained from the (0, 1

2
) or (1

2
, 0)

representation.

� The above computations can be shown more abstractly by using dot
products and properties of unitarity (and non-unitarity). Since we’re
doing quantum mechanics, instead of dot-products, use bra-ket nota-
tion. In that notation, S = 〈ν|ν〉. The action of rotation around
the z-axis then becomes 〈ν|R(θ)†R(θ)|ν〉. Argue, based on unitarity,
that this transformation leaves S invariant. Is a similar thing true for
boosts? Explain.

The foregoing example only shows that when M equals the identity, the
resulting bilinear form is not a Lorentz invariant. I can’t recall the argument
that shows this is true for any choice of self-adjoint M. (Self-adjointness is
required for the scalar S to be real.) But assume that can be shown. That
has profound implications since that prohibits the usual kind of mass term
that there is in Lagrangians.

One last thing. Suppose we have two vectors ν, which transforms ac-
cording to representation (0, 1

2
) and ν ′ which transforms according to the

representation (1
2
, 0). Consider S′ ≡ ν∗iν ′i + ν

′∗iνi.
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� Show that S′ is a real number (hint: take its complex conjugate.)

� Apply rotations as before and show that S’ is a Lorentz invariant. The
bra-ket notation probably is the easiest way to think about this.

� Now apply boosts. The important thing to observe is that ν and ν ′

transform differently. What is the matrix for boosts in each case? Show
that their product is the identity and therefore that S′ is invariant.

What the above shows, is that when there are two 2D fields (i.e. a total of 4
components), one can construct a Lorentz-invariant bilinear and therefore a
familiar-looking mass term. Ultimately, since the electron has mass, this is
one of the reasons why an electron has 4 components rather than 2.

For many years, it was believed that neutrinos were massless. It was
therefore possible for Lorentz-invariant Lagrangians to be constructed from
fields with only 2 components. For reasons not yet discussed, those La-
grangians violate the parity symmetry (and parity violations were one of the
great discoveries of physics in the past century).
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