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What follows is a set of notes to accompany Zee chapter II.3, the first 2.5
pages (stopping before the section “Spinor representation”).

1 Lorentz symmetries

1.1 Rotations around the z-axis with v = 0

Rotate a vector by positive θ counter-clockwise around the z-axis. The co-
ordinates with superscript ‘prime’ are the new coordinates of the original
vector. The transformation is called active.

�

t′ = t

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ

z′ = z

(1)

� In matrix notation
t′

x′

y′

z′

 =


1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1



t
x
y
z

 (2)

� The matrix is known as Rz(θ).

1.2 Boosts along the z-axis, v 6= 0

Take a vector and move it at velocity v relative to the rest frame. Positive
v means “going in the +z direction”. Then the coordinates (‘active’) are the
coordinates of the new vector.
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� Preliminaries

– Set c = 1.

–

γv ≡
1√

1− v2

�

t′ = γv(t− vz)

x′ = x

y′ = y

z′ = γv(z − vt)

(3)

� In matrix notation
t′

x′

y′

z′

 =


γv 0 0 vγv
0 1 0 0
0 0 1 0
vγv 0 0 γv



t
x
y
z

 (4)

� The matrix Bz is called a boost in the z direction. It depends on a
parameter β defined next.

� For notational convenience, follow the convention where β is
defined as β = arcosh(γv). Then you can show that the above matrix
is

Bz(β) =


cosh β 0 0 sinh β

0 1 0 0
0 0 1 0

sinh β 0 0 cosh β

 (5)

2 Generators of the Lorentz group

2.1 Generators for z-rotations and z-boosts

Recall that the rotation generators correspond to infinitesimal rotations. Also
recall that we care about rotation generators because they provide an efficient
way of characterizing and prescribing all rotations. This idea will generalize
to the Lorentz group.
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� Define I ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and Jz ≡ i


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

. Then

Rz(θ) = I + iθJz + ...

and more generally
Rz(θ) = eiθJz .

� Define Kz ≡


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

. Then

Bz(β) = I + βKz + ... (6)

and more generally
Bz(β) = eβKz .

2.2 General rotations and boosts

Everything above can be generalized to the x-axis and the y-axis.

� For notational convenience, it is common to change the indices (t, x, y, z)
to indices (0, 1, 2, 3). Then, for example, instead of writing Jz we write
J3. When we indicate an index for a quadruplet that includes a time-
component, we use Greek letters e.g. ν, µ etc. For triplets like (x, y, z)
we use Roman letter like i or j.

� We end up with

J1 = i


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 ,J2 = i


0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

 ,J3 = i


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0



K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ,K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 ,K3 =


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0



� Compute [J1,J2] = J1J2 − J2J1 to get −


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 = iJ3.

3



� This is a special case of the relationship

[Ji,Jj] = iεijkJk

which you should recognize as being the Lie Algebra of the rotation
group. Since the Lorentz group contains the rotation group, it shouldn’t
be surprising that the generators of the Lorentz group would include
the generators of the rotation group.

� Compute [K1,K2] = K1K2−K2K1 to get −


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 = −iJ3.

This is a special case of the relationship

[Ki,Kj] = −iεijkJk

which looks suggestive but is definitely not the Lie Algebra for the
rotation group (in particular, it involves generators for both rotations
and boosts).

� In the same way, we get

[Ji,Kj] = iεijkKk.

2.3 Rewriting the Lie Algebra of the Lorentz group

The preceding commutator relationships define the Lie Algebra of the Lorentz
group. But there is a simpler algebra we can write.

� Define two new generators

J+i =
1

2
(Ji + iKi)

J−i =
1

2
(Ji − iKi)

� Notice that

[J+i,J+j] =
1

2
(Ji + iKi)

1

2
(Jj + iKj)−

1

2
(Jj + iKj)

1

2
(Ji + iKi)

=
1

4
([JiJj − JjJi]− [KiKj −KjKi] + i[KiJj − JjKi] + i[JiKj −KjJi])

= i
1

4
(εijk)(Jk + Jk + iKk + iKk)

= iεijkJ+k.
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So the new generators J+i satisfy the same Lie Algebra as the rotation
group!

� Similarly [J−i,J−j] = iεijkJ−k, so J−i also satisfies the same Lie Alge-
bra as the rotation group!

� These generators commute, i.e. [J−i,J+j] = 0, so they are independent.

� We see that there are two independent sets of Lorentz generators which
generate the rotation group. Since the Lie Algebra of the rotation
group is the same as the Lie Algebra of SU(2), we have finally proven
that the algebra of the Lorentz group, sometimes known as SO(1, 3)
is isomorphic to su(2)⊕ su(2) where lower-case su(2) denotes the Lie
Algebra of SU(2).

2.4 General representations of the Lorentz group

With the rotation group, we considered the general question of how to con-
struct linear representations on N-dimensional spaces.

2.4.1 Review of representations of the rotation group

� Group representations: The symmetry operations must preserve
the essential properties of the symmetries. For example, if you rotate
around the y-axis by 90 degrees and then around the x-axis by 90
degrees, that is the same as rotating around the axis

(
−1 −1 1

)
by

60 degrees. Thus the operation (representation) for the first rotation
followed by the operation for the second, should be the same as the
operation for rotation around the axis

(
−1 −1 1

)
by 60 degrees.

� Representation of 360 degree rotation: In particular, the opera-
tion for rotation by 360 degrees must be the same as doing noth-
ing! (The identity.)

� Rotations can be represented as N x N matrices operating on N-dimensional
vector spaces. These are called finite-dimensional linear repre-
sentations of the rotation group, also known as SO(3).

– The representations of the rotation group also happen to be uni-
tary.

� The mathematical methodology for classifying representations of the
rotation group, is to start with the much easier problem of constructing
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representations of the Rotation Lie Algebra. The generators of
that Lie Algebra are denoted Ji.

– If there is an NxN representation of rotations, then if J̃i are
the Lie Algebra generators in that representation, then rotations
are represented as eiJ̃·θ.

– We saw that although the rotation group only has odd-dimension
representations(N is odd), there are also even-dimensional repre-
sentations of the su(2) Lie Algebra which are interesting to us
because they constitute representations up to a phase, which is all
we need in quantum mechanics since states are only defined up to
a phase.

� Up to equivalence, there is only one representation for each dimension
N . The convention is to label that representation with the integer j
such that N = 2j + 1. For example, if j = 1

2
, then N = 2. j is known

as the spin.

2.4.2 Symbolic characterization of Lorentz group represen-
tations

Remember that the Lie Algebra of the Lorentz group is su(2)⊕ su(2).
Therefore the representations are characterized by the representation
of each of the su(2) sub-algebras. We label the (J−,J+) representations
as

(j1, j2).

The dimensionality of that representation is (2j1+1)(2j2+1). The rep-
resentations are not unitary. (There are no finite-dimensional unitary
representations of the Lorentz group.)

For example, if (j1, j2) = (1
2
, 1
2
), then the total dimensionality is 4. We

call this representation the vector representation.

As another example, consider (j1, j2) = (1
2
, 0). This has dimension

2 and is called a spinor representation. Notice that (j1, j2) = (0, 1
2
)

also has dimension 2. It is also called a spinor representation and we
distinguish these two inequivalent representations as “left” and “right”.
This is different than with the rotation group where there is only one
representation (up to equivalence) for each dimension.
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2.4.3 Meaning of tensor products

We want to know the meaning ofR[SU(2)]⊗R[SU(2)] whereR[SU(2)]
means “a representation of the group SU(2)”.

Let M1
ij be a matrix representation of the first SU(2) and M2

ij be a
matrix representation of the second SU(2). Let’s say that M1 acts on
an n-dimensional space and is therefore an nxn matrix. Similarly, M2

acts on an m-dimensional space. Define a vector, V of length nm whose
indices are labelled (i, j) and whose values are Vij = v1i ⊗ v2j. This
vector “looks like” a matrix but think of it as one long vector. Then
the action of M1 ⊗M2 on V is V ′ij =

∑
k,lM

1
ikM

2
jlV

kl.
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