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1 Previous episodes ...

In the last meeting

� I introduced the Dirac equation – a 4-component differential equa-
tion, linear in derivatives. I pulled it out of a hat.

� I then pulled out of a hat a set of transformations on the components
and said these represented the Lorentz transformations.

� Then I showed that the Dirac equation doesn’t change form when we
apply those transformations. We say the Dirac equation is Lorentz
invariant.

� Finally I showed you a Lagrangian from which the Dirac equation fol-
lows as an equation of motion.

� In summary, I pulled the Dirac Lagrangian out of a hat and showed
it was invariant under transformations that I called Lorentz transfor-
mations.

Today, I’ll derive the Dirac equation by directly considering how
to make Lorentz invariant Lagrangians.

Why?

� It’s nice to see that the Dirac equation wasn’t pulled out of a hat.

...and I don’t want to follow the historical approach which was very
much like hacking down your lawn with a blunt machete.
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� The method generalizes so that Lorentz invariant Lagrangians can be
found for fields with more than 4 components (e.g. the gravitational
field is given by the metric tensor gµν(x).)

� The method generalizes even further for other Lie groups like SU(3).
We find Lagrangians invariant under those groups.

� This kind of process is called model-building and has domi-
nated many of the theoretical discoveries of the past 60 years.

2 Philosophical Interlude

� So far, the Dirac equation is a classical set of DE’s for complex-valued
functions.

� So far, the discussion about Lie groups and Lie algebras has also been
classical. Nothing about quantum mechanics.

� So, why didn’t mathematicians or physicists – before the birth of quan-
tum mechanics – derive the Dirac equation as an interesting application
of Lorentz symmetries?

The Dirac equation could have been classical??? Matthew has
pointed out that it couldn’t have been classical! The 2-D representation is
NOT a Lorentz representation. In particular, a rotation by 2π becomes a
multiplication by -I rather than I. Only in QM is that allowable, where a
physical theory is regarded as Lorentz invariant if it’s transformations are
represented up to a phase. Or, said more mathematically, the dimension-
2 representations are representations of the covering group of the Lorentz
group. It’s a deep mathematical fact that the rotation covering group is a
factor of 2 larger than the original group, and this factor of 2 gives rise to the
omnipresent factor of 1

2
characteristic of dimension-2 (aka “spin 12”) repre-

sentations. So, as Matthew points out, the spin of the electron is half-integer,
which has profound physical consequences, all because 2-D representations
aren’t proper representations of the Lorentz group.

In any case, even if one could ignore all these reasons for classicists having
ignored the Dirac Lagrangians, it should be said that Lorentz symmetry was
almost as new to physics as quantum mechanics. And besides, the classical
Dirac Lagrangian has energies unbounded from below. That’s bad, even in
classical theory. How do we make the transition from classical to quantum?
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� Remember your basic quantum mechanics. Physics is expressed in
terms of states in a Hilbert space, operators on those states, and prob-
ability interpretations related to an inner product on the Hilbert space.

� Importantly, the rules of QM prescribe a correspondence be-
tween specific physical observables and specific operators.

� The most elegant way to obtain the correspondence is with a La-
grangian.

– Start with the classical Lagrangian (which we’ve been dealing
with).

– Promote the fundamental variables (e.g. positions in particle the-
ory, or fields in field theory) and their canonical momenta, to
operators.

– Operators are objects that don’t commute with one another. So
the operator-promotion goes together with commutation
rules amongst operators.

– Somewhat surprisingly, you don’t need to separately prescribe the
Hilbert space. Instead, you can derive a Hilbert space on which
the operators obey the commutation rules!

– In summary: the variables of the Lagrangian are the ob-
servables of nature, and the commutation rules promote
these to quantum operators.

� So the quantization of a theory is simply the promotion of variables in
the Lagrangian, to operators obeying certain commutation relations.

So far, the entire prescription of quantum mechanics is rule-based. The
issue is that it’s hard to picture why those are the rules. But maybe this is
just a version of the question ”Why is there something rather than nothing?
(See the chapter in Robert Nozick Philosopical Explanations.)

The problem with a pure rule-based explanation of the universe, is that it
makes it more likely that the rules contain a built-in paradox. Godel tells us
this can always be the case, even with something as intuitive as arithmetic.
In my opinion, the miracle of modern physics is that the complex rules of
quantum and statistical physics haven’t led to paradoxes ... ALMOST.

Today, there is an unresolved paradox that is the subject of lots of re-
search – the INFORMATION PARADOX. It’s regarded as a true para-
dox. Starting with the rules of physics, information should be preserved (in
quantum mechanics, this is equivalent to saying that time-evolution is given
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by a unitary operator). But starting with the rule of physics, information
should be lost. That’s a paradox. Why is information lost? It’s complicated,
which is why people are still trying to find out where they’ve made a logical
error (or possibly that the rules of physics must be modified to eliminate the
paradox). The basic idea is this. We all know that stuff which falls into a
black hole never again sees “the light of day”. Information disappears from
our sight, but it’s hidden inside the black hole. But the laws of physics also
say that black holes evaporate – without giving up any of the secret infor-
mation hidden inside them. So far, so good. But eventually the black hole
evaporates completely and now there’s no remaining black hole to hide the
information. Adacadabra – information is lost.

Anyway, all of this motivates me to attempt some kind of an “explana-
tion” for quantum mechanics which feels (to me) more understandable than
just a collection of rules. As it happens, I love the path integral approach.
Roughly speaking, it tells us that every ’path’ or ’configuration’ of the uni-
verse has a corresponding phase, and that when you add up all the phases,
you get an overall contribution which selects preferred configurations with
some probability according to configuration. In macroscopic limits you get
classical mechanics. On the microscopic scale you get quantum mechanics
and quantum field theory.

There’s a problem. All of this feels intuitively reasonable (to me) but it
doesn’t work for Dirac fields. We haven’t discussed this yet. But as it turns
out, the “rules” have to be changed for Dirac fields and the path integral
approach fails dismally...UNLESS we invent a new meaning for variables and
for integration of those variables. In my opinion, that ruins the beauty of the
path integral approach. Or almost. One strange mathematical consequence
of the Dirac-modified path integral approach, is that it can be converted to a
regular path integral with regular variables that interact in a specific highly
non-local manner. I once thought I’d investigate this for my Ph.D. thesis,
but I’ve never been able to gain any useful insights from purusing that line
of thinking. Oh well.

3 Solutions to exercises on Lorentz transfor-

mations

See separate set of notes.
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4 Construction of a Lorentz invariant bilin-

ear form with derivatives

� In the exercises, we had fields ν and ν ′ which transformed respectively
as (0, 1

2
) and (1

2
, 0). By convention we say ν is “right” and ν ′ is “left”.

� We showed that S′ ≡ ν∗iν ′i + ν
′∗iνi is a Lorentz invariant bilinear form.

� The generic question is this: What kinds of matrices M preserve the
value of S =

∑
ij ψ

∗
iM

ijψj under a Lorentz transformation? In the
above example, we showed that if you have a 4-spinor composed of the

two-spinors ν and ν ′ – namely ψ =

(
ν ′

ν

)
, then

ψ†
(

0 1
1 0

)
ψ

is invariant under Lorentz transformations. So M =

(
0 1
1 0

)
is such a

matrix.

� This is described in group theory as the following question: “If a vector
ψ transforms according to the representation (1

2
, 0)⊕ (0, 1

2
) then what

are the irreducible representations that can be formed from the tensor
product terms of the form ψaψb, and what are the coefficient matrices
(M) required to create those irreducible representations.

� Next, include derivatives. ∂µ transforms as a Lorentz vector, which
is the (1

2
, 1
2
) representation. For example, a rotation around the z-

axis, transforms (∂0, ∂1, ∂2, ∂3)φ(x) to (∂0, ∂1 cos θ − ∂2 sin θ, ∂1 sin θ +
∂2 cos θ, ∂3)φ(x′), where φ is a generic field, and x′ = R(θ)−1x. Now
the question we ask is “what coefficient matrix is required to obtain a
scalar from the product of three tensors, (0, 1

2
)⊗ (1

2
, 1
2
)⊗ (1

2
, 0)?”

� In principle, this is a solvable mathematical problem.

� Suppose you solve that problem for a 2-spinor ψ, and you decide that
the right scalar combination is ψ(x)† (σ0∂0 − σ1∂1 − σ2∂2 − σ3∂3)ψ(x).
Let’s see if this form is preserved under a rotation by θ around the

z-axis. Recall that ψ(x) →

(
e−i

θ
2 0

0 e+i
θ
2

)
ψ(x′). Similarly, ψ∗(x) →
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(
e+i

θ
2 0

0 e−i
θ
2

)
ψ∗(x′) where x′ is the rotated x. After rotation, the

derivative term is σ0∂0−σ1 (∂1 cos θ − ∂2 sin θ)−σ2 (∂1 sin θ + ∂2 cos θ)−
σ3∂3. Look at the middle two terms by expanding out the σ1 and σ2
matrices. These add up to(

0 − (∂1 cos θ − ∂2 sin θ) + i (∂1 sin θ + ∂2 cos θ)
− (∂1 cos θ − ∂2 sin θ)− i (∂1 sin θ + ∂2 cos θ) 0

)
=

(
0 (−∂1 + i∂2 ) e−iθ

(−∂1 − i∂2) eiθ
)

Now put it all together (ignoring, for now, the ∂0 and ∂3 terms).

ψ∗(x′)

(
e+i

θ
2 0

0 e−i
θ
2

)(
0 (−∂1 + i∂2 ) e−iθ

(−∂1 − i∂2) eiθ
)(

e−i
θ
2 0

0 e+i
θ
2

)
ψ(x′)

= ψ∗(x′)

(
0 −∂1 + i∂2

−∂1 − i∂2 0

)
ψ(x′)

= ψ∗(x′) (−∂1σ1 − i∂2σ2)ψ(x′)
(1)

Lo and behold, these two derivative terms transform to exactly the
same form they had before transformation. Add in the remaining two
derivative terms (which don’t transform) and we’ve shown that – ex-
cept for the transformation x→ x′, the bilinear form is unchanged by
transformation. But, you might ask, what about the transformation
x → x′? Strictly speaking, since the Lagrangian is the integrand of
the action (S =

∫
d4xL), it’s not the Lagrangian which needs to be in-

variant, but the action. By changing the integration coordinates from
x → x′ and noticing that the Jacobian factor (from changing coordi-
nates) = 1, for rotations, the action is completely unchanged under
rotations.

� You might object, quite rightly, that the derivative factor was pulled out
of a hat. You had to take my word for it that there is a mathematical
theory that tells us exactly how to take the tensor product down to
a scalar. So be it. At least, that should give you a sense of how one
proceeds in general.

� Finally, the pièce de resistance. What is the appropriate form of the
tensor reduction for 4-spinors (above was just a 2-spinor)? The answer
is

iψ†γ0/∂ψ −mψ†γ0ψ
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using the notation introduced in a previous lecture, where /∂ ≡ γµ∂mu.
The factor of i is introduced to assure the Lagrangian is real.

The mathematical theory (of tensor products) tells us that Lorentz
invariance γµ must satisfy the Dirac algebra anti-commutator condition
{γµ, γν} = 2δµν .

There is one further notational simplification that is introduced, where
ψ̄ = ψ∗γ0. With that notation, the Lagrangian becomes

iψ̄ /∂ψ −mψ̄

.
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