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There are many different sign conventions and it’s easy to go crazy recon-
ciling them. For now, I will more or less adopt Lancaster’s conventions (pp.
337 and 338). That requires changing the problem statement from what I
sent out. If you continue to use the original problem statements, I think your
answers will be the same as mine if you change θ to −θ and β to β. [For
those paying careful attention, Lancaster’s definition of K differs from mine
by a factor of i but the rotations and boosts come out the same in the wash.]

1 Exercise on representations

The 2x2 Pauli matrices are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1)

and write σ as the 3-tuple (σ1, σ2, σ3).
Then the 2 x 2 matrix representing (up to a phase) a rotation of angle

θ ≡ |θ| around an axis in the direction of the 3-vector θ is

R(θ) = e−i
σ
2
·θ =

(
cos θ

2
− iθ̂3 sin θ

2
−(iθ̂1 + θ̂2) sin θ

2

−(iθ̂1 − θ̂2) sin θ
2

cos θ
2

+ iθ̂3 sin θ
2

)
(2)

where the notation θ̂i denotes θi
θ

.
In this expression, the 2D representation (i.e. j = 1

2
) of the rotation

generator Ji, is σi
2

.

1.1 Part A

Recall that we defined J±i = 1
2
(Ji± iKi) and that both J+i and J−i generate

the rotation group. Start by considering the Lorentz-group representation
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denoted by (0, 1
2
). Again, recall that this notation means “J− is in the 0

(scalar) representation (i.e., J−i are 0)” and “J+ is in the spin-1
2

(i.e. 2D)
representation”.

� Express J+3 as a 2 x 2 matrix. (From now on, let’s use the terms J±i
to refer to the 2 x 2 representations of the Lie Algebra and not
to the abstract terms of the Lie Algebra.)

SOLUTION: J+3 = σ3
2

= 1
2

(
1 0
0 −1

)
=

(
1
2

0
0 −1

2

)
.

� Let ν be a 2-vector defined by ν =

(
ν1
ν2

)
. Then compute the new

2-vector ν ′ = J+3ν.

This is not a trick question. It’s just a warm-up to get you used to
actually doing the matrix operations.

SOLUTION: ν ′ = J+3

(
ν1
ν2

)
=

(
1
2

0
0 −1

2

)(
ν1
ν2

)
=

(
ν1
2

−ν2
2

)
.

� Next, express J−3 as a 2 x 2 matrix operating on 2-vectors ν. Hint: J−
is in the 0 representation, meaning that it doesn’t transform vectors.

SOLUTION: J−3 =

(
0 0
0 0

)
. Apologies for the hint. It’s more con-

fusing than helpful. In the 0-representation, rotations don’t transform
vectors so they are represented by the identity. An infinitesimal rota-
tion is therefore the identity and the generator must be 0.

� We’re interested in rotations and boosts, and those are generated by Ji
and Ki. Find J3 and K3 from our definitions of J±3.

SOLUTION: Recall that J±i = 1
2
(Ji ± iKi). Then J3 = J+3 +

J−3 =

(
1
2

0
0 −1

2

)
+

(
0 0
0 0

)
=

(
1
2

0
0 −1

2

)
. K3 = −i (J+3 − J−3) =

−i
(

1
2

0
0 −1

2

)
.

� Compute the vector J3ν.

SOLUTION: Since J3 looks just like J+3 we can copy the previous

result. Namely J3ν =

(
ν1
2

−ν2
2

)
.
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� Compute R(θ)ν using eq.(2), where θ is the rotation by θ around the
z-axis, i.e., θ = (0, 0, θ).

SOLUTION: For this rotation around the z-axis, we have R(θ) =

e−iJ3θ = e−i
σ3
2
θ =

(
cos θ

2
− i sin θ

2
0

0 cos θ
2

+ i sin θ
2

)
. Then R(θ)

(
ν1
ν2

)
=(

e−i
θ
2ν1

ei
θ
2ν2

)
.

� In the last set of notes about Lorentz symmetries, we related rotations
to the generators Ji and we also related boosts to the generators Ki

with the expression, for example, B3(β) = eiβK3 . Compute B3(β)ν for
small values of β by expanding the Taylor series through the first order
in β.

SOLUTION:1 B3(β) = I + iβK3 + ... = I + β

(
1
2

0
0 −1

2

)
+ ....

1.2 Part B

This is going to be just like Part A above except that we’ll look at the
representation denoted by (1

2
, 0). Now the roles of J− and J+ are reversed.

� Using the same methods as in Part A, compute R(θ)ν where θ is the
rotation by θ around the z-axis, i.e., θ = (0, 0, θ).

SOLUTION: Now J−3 =

(
1
2

0
0 −1

2

)
and J+3 =

(
0 0
0 0

)
so J3 =(

1
2

0
0 −1

2

)
. This is the same as we had before, so again, R(θ)

(
ν1
ν2

)
=(

e−i
θ
2ν1

ei
θ
2ν2

)
.

� Compute B3(β)ν for small values of β by expanding the Taylor series
through the first order in β.

SOLUTION: First we need to compute K3. Recall from above that
K3 = −i (J+3 − J−3). Using the J±3 matrices for this representation,

1I’ve discovered that somewhere along the line I’ve made a sign error in the definition
of K. I’m too lazy right now to track it down, but beware. The key points are all OK,
but the details of signs need to be sorted out!!
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we have K3 = −i
((

0 0
0 0

)
−
(

1
2

0
0 −1

2

))
= i

(
1
2

0
0 −1

2

)
. We have

the expansion derived above for B3(β) thus leading to B3(β) = I −

β

(
1
2

0
0 −1

2

)
+ ....

� Just for fun. Notice that boosts along the z-axis have almost the same
form of exponential but without “i”. In particular, we have Bz(β) =

ei
σ3(−iβ)

2 . This looks just like a rotation except that we’ve replaced θ by
−iβ. Look at eq. (2) and for simplicity, just concentrate on rotations
around the z-axis. Then to find boosts along the z-axis, replace θ
by −iβ. In case you don’t remember it, cos(−iβ) = cosh(β). Now
compute B3(β)ν for general values of β.

SOLUTION: We derived before, for the (0, 1
2
) representation, that

the rotation R(θ) = eiJ3θ = ei
σ3
2
θ =

(
cos θ

2
+ i sin θ

2
0

0 cos θ
2
− i sin θ

2

)
=(

ei
θ
2 0

0 e−i
θ
2

)
. In the (1

2
, 0) representation, J3 is again equal iσ3

2
so the

rotation looks exactly the same.

In the (0, 1
2
) representation, the boost B3(β) = eiK3β = e

σ3
2
β. This

is the same as replacing, in the rotation expression, θ by −iβ. So

B3(β) =

(
ei
−iβ
2 0

0 e−i
−iβ
2

)
=

(
e
β
2 0

0 e−
β
2

)
. On the other hand, in the

(1
2
, 0) representation, we found that K3 = iσ3

2
, so B3(β) = e−σ3β. From

this, we get B3(β) =

(
e−

β
2 0

0 e
β
2

)
. Just for grins, we can compute, in

that reference frame, B3(β)ν =

(
e−

β
2 ν1

e
β
2 ν2

)
.

Finally, let’s tie this to hyperbolic functions. Recall the definitions of
cosh and sinh. cosh(α) = eα+e−α

2
and sinh(α) = eα−e−α

2
. Then using

these functions, we find B3(β) = 1
2

(
cosh(−β

2
) + sinh(−β

2
) 0

0 cosh(−β
2
)− sinh(−β

2
)

)
.

To summarize, rotations transform the same in the two representations,
but boosts transform differently (β → −β.). Furthermore, boosts can
be thought of a analytic continuations of rotations, where the angle is
rotated to an imaginary angle.
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2 Constructing a Lorentz-invariant bilinear

quantity

The goal here, is to explore ways to construct a Lorentz-invariant quantity
out of a bilinear form involving the vector ν and its conjugate ν∗. We’ll
concentrate exclusively on bilinears of the form S =

∑
ij ν
∗
iM

ijνj.
2 In the

rest of this exercise, I’ll leave out the summation sign and instead, use the
notation that repeated indices are summed over.

� Let M =

(
1 0
0 1

)
. Then S = ν∗i νi. Apply to ν a rotation by θ around

the z-axis and show that S does not change.

SOLUTION: ν∗ =

(
ν∗1
ν∗2

)
. Define ν ′ = R(θ)ν so ν

′∗ = (R(θ)ν)∗.

Above, we derived ν ′ = R(θ)

(
ν1
ν2

)
=

(
e−i

θ
2ν1

ei
θ
2ν2

)
so ν

′∗ =

(
ei
θ
2ν∗1

e−i
θ
2ν∗2

)
.

We see that ν
′∗
i ν

′
i = ν∗i νi. Therefore S ′ = S, which was to be shown.

� Next, apply a boost around the z-axis and show that S changes. You
can do this either with infinitesimal boosts (so expand to order β)
or with finite boosts. Notice that your result will depend on
whether you use the boost obtained from the (0, 1

2
) or (1

2
, 0)

representation.

SOLUTION: Above, we derived ν ′ = B3(β)ν =

(
e−

β
2 ν1

e
β
2 ν2

)
. Then

ν
′∗ =

(
e−

β
2 ν∗1

e
β
2 ν∗2

)
. So ν

′∗
1 ν

′
1 = e−βν∗1ν1 and ν

′∗
2 ν

′
2 = eβν∗2ν2 from which we

see that S ′ = e−βν∗1ν1 + eβν∗2ν2, compared to S = ν∗2ν2 + ν∗1ν1.

In the other representation, we would get S ′ = eβν∗1ν1 + e−βν∗2ν2.

� The above computations can be shown more abstractly by using dot
products and properties of unitarity (and non-unitarity). Since we’re
doing quantum mechanics, instead of dot-products, use bra-ket nota-
tion. In that notation, S = 〈ν|ν〉. The action of rotation around
the z-axis then becomes 〈ν|R(θ)†R(θ)|ν〉. Argue, based on unitarity,

2In the original statement of the exercises, I reversed the upper and lower indices.
Ultimately that doesn’t matter but I found it easier to read when I reversed them.
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that this transformation leaves S invariant. Is a similar thing true for
boosts? Explain.

SOLUTION: From earlier, R(θ) =

(
e−i

θ
2 0

0 ei
θ
2

)
. A unitary ma-

trix U has the property that U−1 = U†. R†(θ) =

(
ei
θ
2 0

0 e−i
θ
2

)
.

If you multiply this by R(θ) you’ll get the identity. So that shows
R†(θ) = R−1(θ) and therefore that rotations are unitary. Finally,
〈ν|R(θ)†R(θ)|ν〉 = 〈ν|ν〉.

This doesn’t work for boosts. Recall B3(β) =

(
e−

β
2 0

0 e
β
2

)
. It’s easy

to see that B−13 (β) =

(
e
β
2 0

0 e−
β
2

)
Notice for future reference that

B−13 is the same matrix as what we’d get for the boost in the

OTHER representation!) but B†3(β) =

(
e−

β
2 0

0 e
β
2

)
so B−13 6= B†3

therefore boosts are not unitary. We shouldn’t be too surprised, since
it’s known that there are no finite-dimensional unitary representations
of the Lorentz group. Then 〈ν|B3(β)†B3(β)|ν〉 = 〈ν|B3(2β)ν〉 6= 〈ν|ν〉.

The foregoing example only shows that when M equals the identity, the
resulting bilinear form is not a Lorentz invariant. I can’t recall the argument
that shows this is true for any choice of self-adjoint M. (Self-adjointness is
required for the scalar S to be real.) But assume that can be shown. That
has profound implications since that prohibits the usual kind of mass term
that there is in Lagrangians.

One last thing. Suppose we have two vectors ν, which transforms ac-
cording to representation (0, 1

2
) and ν ′ which transforms according to the

representation (1
2
, 0). Consider S′ ≡ ν∗iν ′i + ν

′∗iνi.

� Show that S′ is a real number (hint: take its complex conjugate.)

SOLUTION: S
′∗ =

(
ν∗iν ′i + ν

′∗iνi
)∗

=
(
νiν

′∗
i + ν

′iν∗i
)

=
(
νiν

′∗i + ν ′iν
i∗) =

S.

� Apply rotations as before and show that S’ is a Lorentz invariant. The
bra-ket notation probably is the easiest way to think about this.
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SOLUTION: S = 〈ν|ν ′〉 + 〈ν ′|ν〉. Then S′ = 〈ν|R(θ)†R(θ)|ν ′〉 +
〈ν ′|R(θ)†R(θ)|ν〉 = 〈ν|ν ′〉 + 〈ν ′|ν〉 = S. We have employed the fact
that rotations are the same in both representations.

� Now apply boosts. The important thing to observe is that ν and ν ′

transform differently. What is the matrix for boosts in each case? Show
that their product is the identity and therefore that S′ is invariant.

SOLUTION: We mentioned before that a boost in the (0, 1
2
) repre-

sentation transforms |ν〉 to e
σ2
2 |ν〉 and that a boost in the (1

2
, 0) rep-

resentation transforms |ν ′〉 to e−
σ2
2 |ν〉. In both cases, the boosts are self-

adjoint. Therefore S transforms to 〈ν|B3(β)†B′3(β)|ν ′〉+〈ν ′|B′3(β)†B3(β)|ν〉 =
〈ν|e

σ2
2 e−

σ2
2 |ν ′〉 + 〈ν ′|e−

σ2
2 e

σ2
2 |ν〉 = 〈ν|ν ′〉 + 〈ν ′|ν〉 = S where the prime

over B3 denotes that the boost is in the representation (1
2
, 0).

What the above shows, is that when there are two 2D fields (i.e. a total of 4
components), one can construct a Lorentz-invariant bilinear and therefore a
familiar-looking mass term. Ultimately, since the electron has mass, this is
one of the reasons why an electron has 4 components rather than 2.

For many years, it was believed that neutrinos were massless. It was
therefore possible for Lorentz-invariant Lagrangians to be constructed from
fields with only 2 components. For reasons not yet discussed, those La-
grangians violate the parity symmetry (and parity violations were one of the
great discoveries of physics in the past century).

7


