Exercise on scalar particle creation

Bill Celmaster

April 4, 2021

The exercise will be for you to derive an expression for a normalized scalar state with energy 3ω . This state will represent a state with 3 particles each of energy ω . Up to now, we've been dealing with fermions and anticommutation relations, and for those particles, it's not possible to have more than one state with energy ω .

Notation and assumptions:

- 1. The normalized vacuum state is $|\Omega\rangle$.
- 2. The annihilation operator a annihilates the vacuum. That is, $a|\Omega\rangle = 0$.
- 3. The scalars have a commutation relation $aa^{\dagger} a^{\dagger}a = [a, a^{\dagger}] = 1$.
- 4. The energy operator $\hat{E} = \omega a^{\dagger} a$.

I will derive expressions for the normalized 1-particle and 2-particle states and then you can use the same procedure to derive the 3-particle state.

• Assertion: The state $|1\rangle = a^{\dagger} |\Omega\rangle$ has an energy of ω .

Proof: Apply the energy operator to that state and show its eigenvalue is ω .

$$\hat{E}a^{\dagger}|\Omega\rangle = (\omega a^{\dagger}a) a^{\dagger}|\Omega\rangle = \omega a^{\dagger}aa^{\dagger}|\Omega\rangle
= \omega a^{\dagger} (a^{\dagger}a|\Omega\rangle + |\Omega\rangle)
= \omega a^{\dagger}|\Omega\rangle,$$
(1)

where the second line follows by applying assumption #3 and the last line follows by applying assumption #2.

• Assertion: The state $|1\rangle = a^{\dagger}|\Omega\rangle$ is normalized.

Proof: We want to show that $\langle 1|1 \rangle = 1$. Observe that $\langle 1| = \langle \Omega|a$. Thus $\langle 1|1 \rangle = \langle \Omega|aa^{\dagger}|\Omega \rangle$. But then

$$\langle \Omega | a a^{\dagger} | \Omega \rangle = \langle \Omega | a^{\dagger} a + 1 | \Omega \rangle$$

= $\langle \Omega | \Omega \rangle$ (2)
= 1,

where the first line follows from assumption #3, the second line follows from assumption #2 and the last line follows from assumption #1.

• Assertion: The state $|2\rangle = \frac{1}{\sqrt{2}}a^{\dagger}|1\rangle$ has an energy of 2ω .

Proof: Expand $a^{\dagger}|1\rangle$ to $a^{\dagger}a^{\dagger}|\Omega\rangle$ and then apply the energy operator to that state and show its eigenvalue is 2ω .

$$\hat{E}a^{\dagger}a^{\dagger}|\Omega\rangle = (\omega a^{\dagger}a) a^{\dagger}a^{\dagger}|\Omega\rangle = \omega a^{\dagger}aa^{\dagger}a^{\dagger}|\Omega\rangle
= \omega a^{\dagger} (a^{\dagger}aa^{\dagger}|\Omega\rangle + a^{\dagger}|\Omega\rangle)
= \omega a^{\dagger}a^{\dagger} (a^{\dagger}a|\Omega\rangle + |\Omega\rangle) + \omega a^{\dagger}a^{\dagger}|\Omega\rangle$$
(3)

$$= \omega a^{\dagger}a^{\dagger}|\Omega\rangle + \omega a^{\dagger}a^{\dagger}|\Omega\rangle
= 2\omega a^{\dagger}a^{\dagger}|\Omega\rangle,$$

where the second line follows from assumption #3 and so does the third line, and the fourth line follows from assumption #2. Then, since $a^{\dagger}a^{\dagger}|\Omega\rangle$ is an eigenvector of \hat{E} with eigenvalue 2ω , the same is true if you multiply that state by a constant, and thus the state $|2\rangle$ has energy 2ω .

• Assertion: The state $|2\rangle = \frac{1}{\sqrt{2}}a^{\dagger}a^{\dagger}|\Omega\rangle$ is normalized.

Proof: We want to show that $\langle 2|2 \rangle = 1$. Observe that $\langle 2| = \frac{1}{\sqrt{2}} \langle \Omega | aa$. Thus $\langle 2|2 \rangle = \frac{1}{2} \langle \Omega | aaa^{\dagger}a^{\dagger} | \Omega \rangle$. But then

$$\frac{1}{2} \langle \Omega | aaa^{\dagger}a^{\dagger} | \Omega \rangle = \frac{1}{2} \langle \Omega | aa^{\dagger}aa^{\dagger} + aa^{\dagger} | \Omega \rangle$$

$$= \frac{1}{2} \langle \Omega | aa^{\dagger}a^{\dagger}a + aa^{\dagger} + aa^{\dagger} | \Omega \rangle$$

$$= \frac{1}{2} \langle \Omega | 2aa^{\dagger} | \Omega \rangle$$

$$= \langle \Omega | a^{\dagger}a + 1 | \Omega \rangle$$

$$= 1,$$
(4)

where the first and second lines employ assumption #3, the third line employs assumption #2, the fourth line employs assumption #3, the fifth line employs assumption #2 and the last line employs assumption #1.

EXERCISE: Show that the state $|3\rangle = \frac{1}{\sqrt{3}}a^{\dagger}|2\rangle$ is normalized and has an energy of 3ω .