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1 Preface

There seem to be a countless number of articles and class-notes about the
theory of fermions and, in particular, about solutions and behaviors of various
forms of the Dirac equation. Many of the articles are lengthy and detailed.
The authors often appear motivated by a conviction that other articles have
been either unclear, too complicated, ambiguous or simply incomplete. Part
of the reason for all this, is that the theory is rife with conventions and nota-
tions. Conclusions derived in one convention cannot necessarily be expressed
in the same way, using a different convention. This problem appears espe-
cially confusing with regards to the term “Majorana”. There are 3 distinct,
but entangled, uses of that term:

� Majorana particles (the particle is self-charge-conjugate)

� Majorana mass (a mass term for a 2-spinor theory)

� Majorana representation (a form of the Dirac matrices)

The notes which follow are my attempt to address a few questions for which
published answers – appearing in multiple papers – were unsatisfactory to
me. In retrospect, the unsatisfactory nature of these answers was, in large
part, because they required far more detail than I had imagined necessary. In
the end, I’ve been unable to write anything more streamlined. So, although
I’m now satisfied that I understand the answers to my original question, I’m
convinced that my notes will ultimately be as obtuse to others, as other
notes have been to me. Certainly, it’s highly unlikely that anything novel is
contained in my notes. Somewhere, there is undoubtedly a paper treating
the subject in almost identical fashion to what I’ve done. But maybe what
was necessary for me, is to have derived everything myself from scratch.
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2 Introduction

These notes address some terminology concerning the masses of neutrinos. A
question is frequently asked, ”are neutrinos Majorana particles, or are they
Dirac particles?” I would propose that an alternate way of asking the question
is ”are neutrinos Dirac particles as well as Majorana particles?” The second
formulation of the question suggests that there’s nothing interesting about
the Majorana nature of neutrinos. What would be interesting is if they are
also Dirac.

The point is this. In order for neutrinos to obtain mass, there needs to be
at least two distinct particles. I will explain that point shortly. It’s possible
to write a theory where each particle is its own antiparticle. However, if those
two distinct particles have the same mass, then the theory can be written
so that one particle is regarded as the (distinct) antiparticle of the other.
This would be the usual 4-spinor Dirac formulation. Thus the equal-mass
situation is just a special case of the two-Majorana theory.

These notes start with a thorough review of the theory of a single Majo-
rana field. We will see that this theory is equivalent to the theory of a single
two-spinor field with a Majorana mass term. The notes then continue by
examining a theory with both a left and right chiral field, and with a Dirac
mass term (mixing the fields) as well as a Majorana mass term for one of the
fields. This theory is currently regarded as the most general neutrino theory
consistent with the discovery of neutrino masses. We’ll see that this theory
can be written as a theory of two Majorana fields.

A natural question might be “why does the electron field happen to be
the special case of a Dirac field?” An answer – probably the standard answer
– is that electrons carry charge, so gauge invariance forces the Dirac “con-
dition”. Neutrinos might not be similarly constrained, hence allowing the
more general physics of two Majorana particles of separate masses.

3 Plan

� The canonical Dirac equation and its solutions

� Equations of motion for a single-Majorana theory

� Obtaining equations of motion from canonical Lagrangians (used to
normalize the annihilation and creation operators)

� Obtain and solve the equations of motion for the weak interaction neu-
trino kinetic terms, in terms of Majorana fields
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� Rewrite the original fields which appear in the weak-interaction La-
grangian, in terms of the Majorana fields

� Derive the conclusions in a state formulation by converting from the
field formulation.

A notational comment: In pure math, vectors are essentially just objects with
components, and those objects can be added and maybe can even participate
in dot products. In that sense, a spinor is an example of a vector. In
physics, we tend to use the word “vector” to also implicitly include particular
transformation properties (usually fundamental representations of rotations
or Lorentz transformations). The word “spinor” is used for “mathematical
vectors” that transform according to the spinor representation. One of the
quantities I introduce below, has 8 components. I simply call it an “object”
but again, it’s just a type of vector. No guarantees that I’ve managed below
to keep track of my usage of “vectors” and “spinors”.

4 The canonical Dirac equation and its solu-

tions

Since a Majorana spinor is defined as a constrained form of a Dirac spinor

solution, we’ll start by describing those solutions, ψ ≡


ψ1

ψ2

ψ3

ψ4

, of the “canon-

ical” Dirac equation. By “canonical”, I mean a specific (and familiar) form
of the 4-spinor Dirac equation where, amongst other conventions, the mass
parameter m is positive.

i/∂ψ −mψ = 0. (1)

The γ matrices need only satisfy the Dirac algebra, but for definiteness, we’ll
work in the Weyl (chiral) basis where the γ matrices are defined in terms of

the Pauli matrices σi

(
for example,σ2 =

(
0 −i
i 0

))

γ0 =

(
0 I
I 0

)
, γi =

(
0 σi
−σi 0

)
. (2)

The importance of this setup, is that it permits borrowing from other texts
such as Schwartz, the entire formalism of the Dirac theory including classi-
cal solutions and, importantly, the annihilation-creation operators and their
particle interpretations.
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The Dirac equation is solved by starting with the ansatz

ψ(x) =
∑
s

∫
d3p

(2π)3
1√
2ωmp

(
aspu

s(p)e−ipx + bs†p v
s(p)eipx

)
, (3)

where ωmp =
√

p2 +m2 = p0. In the above expression, for each index value
s, us(p) and vs(p) have 4 complex components. asp and bsp each have 1 com-
plex component and will eventually be interpreted as operators. We’ll begin
by solving the equation classically and will treat asp and bsp as complex co-
efficients (and these, in turn, depend on the choices we make for us(p) and
vs(p)). Eventually, as we promote the Dirac spinors to operator-fields for the
quantum theory, then ψ, asp and bsp will all be (non-commutative) operators on
the Hilbert space. The quantization condition will impose anti-commutation
rules on the fields ψ and ψ†. These, in turn will impose anti-commutation
relations on asp, b

s
p and their adjoints. With the right choices of us(p) and

vs(p), we will then be able to interpret asp and bsp as the annihilation opera-
tors of particles and antiparticles respectively. We will refer to those “right”
choices as “canonical solutions.”

Canonical solutions (with the above ansatz) are given, for example, in
Schwartz1 p. 190. It is usual to only show solutions for motion in the z-
direction, However, those solutions are real, therefore making it difficult to
extrapolate general behaviors under conjugation (of course, one could choose
to maintain throughout, the most general solutions for any momentum, but
I prefer something more concrete). So, instead of the z-direction, obtain so-
lutions for 4-momenta pµ = (E, 0, py, 0). The derivation and generalizations
are given in Appendix A.

u1(m, p) =
1

2


√
ωmp + py +

√
ωmp − py

i
(√

ωmp − py −
√
ωmp + py

)
√
ωmp + py +

√
ωmp − py

i
(√

ωmp + py −
√
ωmp − py

)
 , u2(m, p) =

1

2


i
(√

ωmp + py −
√
ωmp − py

)
√
ωmp + py +

√
ωmp − py

i
(√

ωmp − py −
√
ωmp + py

)
√
ωmp + py +

√
ωmp − py

 (4)

v1(m, p) =
1

2


√
ωmp + py +

√
ωmp − py

i
(√

ωmp − py −
√
ωmp + py

)
−
√
ωmp + py −

√
ωmp − py

−i
(√

ωmp + py −
√
ωmp − py

)
 , v2(m, p) =

1

2


i
(√

ωmp + py −
√
ωmp − py

)
√
ωmp + py +

√
ωmp − py

−i
(√

ωmp − py −
√
ωmp + py

)
−
√
ωmp + py −

√
ωmp − py


For notational convenience, we will drop the argument m, so u1(p) ≡ u1(m, p)
etc.

1I have the second printing but there was an erratum posted, which has the basis
vectors shown here.
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We will also write out the Dirac equation and its components in terms of
the upper two and lower two components of spinors. To do this, introduce
some extra notation. Distinguish the “up” and “down” halves of a generic

spinor ψ with the notation ψU =

(
ψ1

ψ2

)
and ψD =

(
ψ3

ψ4

)
. Also, it will be

convenient to define σµ as (I2x2, σ1, σ2, σ3) and σ̄µ as (I2x2,−σ1,−σ2,−σ3).
Then the Dirac equation eq. (1) becomes

i∂µσ
µψD −mψU = 0,

i∂µσ̄
µψU −mψD = 0.

(5)

5 Fields, particles, states and wavefunctions

Different treatments of the subject matter, focus on different objects that
are related to one another. We’ve touched on these, but in this section I’ll
try to distinguish and compare those objects.

5.1 Fields

A field-theoretic description starts with a Lagrangian (whose integral is called
the action) written in terms of fields, that are generically written ψi(x) where
i is an index and x is the time-space coordinate vector.

Although we often say that ψi(x) is an operator, I think that’s jumping
ahead of ourselves. In my opinion, a better way of proceeding is to say that
the fields in the Lagrangian are complex-valued functions,2 and then proceed
to find the extrema of the action by writing a Euler-Lagrange equation for
complex-valued functions.

However, AFTER writing the E-L equation but before solving it, we
promote the fields to operators. Formally they continue to be written as
ψi(x) but now those quantities are understood as operator-valued functions
and the free variables of the E-L solutions become operators.

5.2 Particles and single-particle states

We need one more ingredient before we can make sense of the operators.
After all, an operator has to act on something, and we’ve said nothing about
what is acted upon. Miraculously, it turns out that all we need to say about
the field operators is how they (anti)commute with one another! From there,

2strictly speaking, for fermions, we need to extend all this to the rather abstract concept
of Grassman-variable-valued functions but for most of this discussion we can ignore that
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we can construct a vector space (more specifically, a Hilbert space) and a
set of operators on that space, so that those operators obey the E-L equa-
tions AND the (anti)commutation relations. This construction is a concrete
realization of the abstract field theory and is referred-to as a representation.
The representation can (usually?) be made unique by asserting there is only
a single lowest-energy state (the energy is an eigenvalue of the Hamiltonian
operator, which can be constructed out of the operator fields) – an assertion
that cannot be obeyed in theories with broken symmetries.

Rather than showing the path that takes us all the way from the La-
grangian to the above-mentioned representation of the operators, I’ll zero in
on the result. It turns out that the solution of the E-L equation, in operator
form, can be expanded in terms of a few operators traditionally described as
as(p) and bs(p). These have well-known (anti)commutation relations amongst
one another and are known respectively as particle-annihilation operators and
antiparticle-annihilation operators. Their adjoints are known as particle and
antiparticle creation operators.

Now I’ll define what I’m going to mean by the words ‘particle’
and ‘antiparticle’ and their single-particle states . First, let’s give
a name to the kind of particle associated with the field ψ. I’ll call it ν.
It’s just a name but I want to keep it distinct from the name of the field!
We apply the particle creation operator to the vacuum (state) and define
the resultant state as |ν, s, p〉 = a†s(p)|0〉. I will refer to |ν, s, p〉 as a ν
single-particle-state and I will refer to the multiplicity of those
states (the collection for all spin s and momenta p) as the ν-
particle! Similar remarks pertain to antiparticles. By convention, if ν is
the name of the particle associated with the field ψ, then ν̄ is the name of the
antiparticle associated with with the field ψ and we write |ν̄, s, p〉 = b†s(p)|0〉.
I will refer to |ν̄, s, p〉 as a ν̄ single-antiparticle-state and I will refer to the
multiplicity of those states (the collection for all spin s and momenta p) as
the ν̄-antiparticle. We can also say this differently as “ν̄” is the antiparticle
of “ν”.

5.3 General states

I’ve already specified the single-particle states. All of the above generalizes in
two directions. First, the Lagrangian may contain several different fields, and
for each of these there is a collection of annihilation and creation operators
and associated single-particle and single-antiparticle states. Second, for each
field, more states can be created than just the single-particle states. The
most general case is the Fock space, consisting of linear combinations of
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multi-particle states (I include here, states like |ν, n̄u, s1, s2, p1, p2〉 etc.). For
multiple fields, all linear combinations of the above are permitted.

One notational complexity here, is that there is some freedom in the La-
grangian for how we label fields. So, for example, we could have written
the traditional Dirac electron Lagrangian out of fields ψL and ψR rather
than ψ and following the naming conventions above, we’d say that these two
fields correspond to particles e−L and e−R (and the corresponding antiparti-
cles). However, for the usual massive Dirac theory, the E-L equations lead
to relationships between the e−L and e−R creation operators, and in the end we
combine things into a single creation operator called the e− creation opera-
tor. The point is, that once there are relations between the creation operators
of a theory, there can be some resultant ambiguities about what we mean
by a particle or antiparticle. Less ambiguous are the single-particle states
since these are defined as the result of acting on the vacuum with a specific
well-defined operator.

5.4 Wavefunctions

In the Schrodinger description of non-relativistic quantum mechanics, the
fundamental quantity is a wavefunction, usually described as ψ(x). The
symbol ψ in this context is NOT directly related to the field ψ so for now,
I’ll use the symbol χ to refer to Schrodinger-style wavefunctions.

Mathematically speaking, a wavefunction is the representation of a state.
The connection between Schrodinger’s formalism and Heisenberg’s is χ(x) =
〈x|ψ〉 or χ̃(p) = 〈p|ψ〉. The states |x〉 are eigenstates of the position operator
and the states |p〉 are eigenstates of the momentum operator. We say that
χ(x) is a position wavefunction representation of the state and that χ̃(p) is
a momentum wavefunction representation of the state.

When we refer to the spinors v and p as antiparticles or states, what we
really mean is that they are Schrodinger-style wavefunctions. The question, is
how can we connect those to the Heisenberg states that we’ve been discussing
and in turn, how are those related to particles. Start by considering a single-
antiparticle state |ν̄, p, s〉. We want vs(p), for example, to be a particular
wavefunction representation of that single-antiparticle state. So, the question
is “what representation?” If we were following the example of Schrodinger
wavefunctions, we would look for a complete set of orthonormal states that
can be used to create the desired wavefunction representation. Here’s an
ansatz.

〈0|ψ(x) + ψ∗(x)|ν̄, p, s〉 = vs†(p)e−ipx. (6)

We get this by expanding ψ† and ψ in terms of annihilation and creation
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operators (or alternatively, by applying the field to the vacuum and then
expanding in single-antiparticle states). The same kind of manipulations can
be used to interpret u as a representation of single-particle states.

I have to admit that although this seems like a reasonable interpretation
of us(p)e−ipx and vs(p)eipx as wavefunctions or representations of states, I
really don’t find it easy to apply this interpretation to the understanding of
phenomena like the see-saw effect or even Majorana particles.

6 A single Majorana theory

Remain in the Weyl representation. A Majorana spinor is defined as a Dirac
spinor, ψ constrained by3

−iγ2ψ∗ = ψ. (7)

We will associate this field with a particle ν and its antiparticle ν̄. The term
on the left of the equation is known as the charge-conjugate of ψ and is
denoted by the symbol ψC ≡ −iγ2ψ∗. The constraint expressed in terms of
the up and down components of ψ becomes one of the two following equivalent
equations:

−iσ2ψ∗D = ψU ,

iσ2ψ
∗U = ψD.

(8)

It should be mentioned here that there is no guarantee that this kind of a
constraint could be satisfied by any solution of the Dirac equation. However,
this particular constraint does have solutions.

Apply the constraint equations to the component Dirac equations of eq.
(5) to get two equivalent equations,

i∂µσ
µψD + imσ2ψ

∗D = 0,

i∂µσ̄
µψU − imσ2ψ∗U = 0.

(9)

3There is a bit of imprecision in the use of the asterisk(∗) for linear operators. Strictly
speaking, we should only use the dagger (†) to denote the Hermitian conjugate. However,

when we have a column vector of operators such as the field ψ =


ψ1

ψ2

ψ3

ψ4

 and we want to

indicate that the column should be transposed into a row, simultaneously performing the
Hermitian conjugate on each element of the vector, then we write this as ψ†. If, instead,
we want to conjugate each element but without taking the transpose, we write ψ∗. It
is generally clear from context whether the asterisk is meant to represent the Hermitian
conjugate of an operator, or the complex conjugate of a number.
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It’s important to recognize that although these equations are obtained by
imposing a constraint on the Dirac equation, we could equally well think of
either (equivalent) equation as standing on its own, independent of the Dirac
equation from which it was derived. In that view, we refer to the mass term
as a “Majorana mass”.

Return to the Majorana constraint of eq. (7) and apply it to the solution
of the Dirac equation given by eq. (3) . Separately equate the coefficients of
eipx or e−ipx to obtain ∑

s=1,2

aspu
s(p)− iγ2bspv∗s(p) = 0. (10)

We will refer to the asp’s as ν annihilation operators, and bsp’s as ν̄ annihilation
operators. We can now infer from eq. (4) that

a1†p = −b2†p , a2†p = b1†p . (11)

Since the solutions of eq (4) are only for momenta in the y-direction, the
above equalities have been shown only for those momenta. However, the
equalities generalize to all momenta. Now we can write a relationship be-
tween single-particle and single-antiparticle states by applying the above cre-
ation operators to the vacuum. We obtain

|ν̄, p, s〉 = iσss
′

2 |ν, p, s′〉 (12)

Notice that the Majorana constraint implies that the antiparticles
are the same as the particles.4

7 Lagrangian

7.1 Canonical forms and normalization

This section was added after I had run into some normalization difficulties
with an approach based on a Lagrangian whose 4-spinor components are
constrained by the Majorana condition. Those constraints are generically
holonomic constraints for the variables in the Lagrangian, and require careful
treatment in order to obtain the correct equations of motion and (anti-)
commutation relations. To avoid those complications, this section describes
unconstrained Lagrangians and their solutions in terms of annihilation and

4This is even more evident if we transform to the Majorana representation. In that
representation, the self-charge-conjugation condition becomes a reality condition. The
self-conjugacy of ψ then directly leads to an equality between particles and anti-particles.
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creation operators. We refer to these as canonical forms. Later on, as we
introduce mixtures of fields, it will be important to force these into one of the
canonical forms, so that we can derive correctly the physical consequences of
the theory.

There are two distinct ways in which we use the Lagrangian to extract
physics. One way, is to obtain the equations of motion. The other, which we
call quantization is to obtain commutation (or anti-commutation) relations
for the field operators. The transition from Lagrangian to scattering matrix
is well-documented, but requires great care with signs, factors of 2, and so on.
In order to avoid re-inventing the wheel each time a new theory is explored,
it’s useful to convert the Lagrangian into a canonical form whose behavior
has been previously analyzed. The canonical forms of interest here are

LDirac = iψ̄ /∂ψ −mψ̄ψ,

LMajorana = iν†σ̄µ∂µν + i
m

2
(νTσ2ν − ν†σ2ν∗),

(13)

where m is positive, ψ is a 4-spinor fermion, and ν is a 2-spinor fermion. The
notation φ̄ for any field φ, is taken to mean φ†γ0, and the notation /a for any
vector a is taken to mean γµaµ. Furthermore, in the canonical forms, there
are no constraints.5 When, later in the text, we introduce various qualifiers
such as prime superscripts, for the ψ and ν fields, these qualifiers will be
implicitly inherited by the the components of those fields. So, for example, if

we were to generically write ψ =

(
ψA
ψB

)
, then ψ′ =

(
ψ′A
ψ′B

)
and similarly the

subscripts A and B will be inherited by the components of their respective
2-spinors. Also, notice that there is an equivalent Majorana Lagrangian form
where the first term is iν†σµ∂µν.

The Euler-Lagrange equations lead to the equation of motions

i/∂ψ −mψ = 0

iσ̄µ∂µν − imσ2ν∗ = 0.
(14)

These are the Dirac equation (eq. (1)) and Majorana equations (eqs. (9) )
shown in the previous sections.

5Also note that these Lagrangians are real. When proving that, don’t forget that the
fields anticommute and that for Grassman variables, the complex conjugate of αβ is β∗α∗).
The mass terms for the Majorana Lagrangians would be 0 if the fields didn’t anti-commute.
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The quantization conditions6 are

{ψα(t,x), ψ†β(t,y)} = δαβδ3(x-y), (15)

{να(t,x), ν†β(t,y)} = δαβδ3(x-y). (16)

All other anti-commutators between equal-time field components are zero.
With the canonical Dirac Lagrangian along with the resulting quantiza-

tion conditions, with the canonical Dirac solution ψ of eq. (3), and with the
choices of u and v discussed in Appendix A, the operators asp and bsp can be
shown to satisfy the standard annihilation/creation anti-commutation rela-
tions.

Furthermore, if we impose the Majorana constraint of eq. (7) on the
canonical solutions ψ, and if we also impose the relationship of eq. (11)
between the operators asp and bsp then the asp operators continue to satisfy the
standard annihilation/creation anti-commutation relations.

7.2 The kinetic terms of the general weak-interaction
neutrino fields

The general Lagrangian to be examined in these notes, is

LK = iν†Lσ̄
µ∂µνL + iν†Rσ

µ∂µνR −m(ν†LνR + ν†RνL)− iM
2

(νTRσ2νR − ν
†
Rσ2ν

∗
R).

(17)
where νL and νR are two unconstrained fermion (i.e. anticommuting) fields,
each with two components. The Lagrangian is invariant under Lorentz trans-
formations which transform νL and νR as left- and right- chiral spinors.

8 Equations of Motion

The equations of motion are obtained by finding fields that solve

δLK = 0.

One common procedure which we’ll adopt, is to define two 4-spinors as

ψA =

(
νL

iσ2ν
∗
L

)
, ψB =

(
−iσ2ν∗R
νR

)
. (18)

6The quantization conditions are set by anti-commutation conditions between the in-
dependent variables and their conjugate momenta
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In other treatments such as Schwartz, the subscripts A and B are replaced
by L and R. That notation has the advantage of reminding us how the
spinors are constructed, but the disadvantage (more serious, in my opinion)
of potentially misleading the reader into thinking that these 4-spinors have
definite chirality. With these definitions, we can easily verify (by brute force
expansion) that the equations of motion can be written as

i

(
/∂ 0
0 /∂

)(
ψA
ψB

)
−
(

0 m
m M

)(
ψA
ψB

)
= 0. (19)

The entries of the mass matrix are all implicitly 4 x 4 matrices. For example,
the entry “m” is meant to denote mI4. Another notational simplification will

be to define the 8-spinor ψ ≡
(
ψA
ψB

)
.

The resultant equations of motion are not in canonical form, so the next
steps are to find a new basis of fields which convert the equations to canon-
ical form. We will end up with two separate Majorana fields with separate
masses, and then we will rewrite the original neutrino fields in terms of those
Majorana fields.

Find the eigenvalues and eigenvalues7 of the mass matrix

(
0 m
m M

)
, to

construct a similarity transformation matrix S =

(
SLLI4x4 SLRI4x4
SRLI4x4 SRRI4x4

)
, with

the property that S

(
0 m
m M

)
S−1 =

(
m′′ 0
0 M ′′

)
.

m′′ = −
√
M2 + 4m2 −M

2

M ′′ =

√
M2 + 4m2 +M

2(
SLL SLR
SRL SRR

)
=

(
1 M−

√
M2+4m2

2m

1
√
M2+4m2+M

2m

) (20)

m′′ turns out to be negative (which is not canonical), but that will be dealt
with later. Define ψ′′ = Sψ, so

ψ′′ ≡
(
ψ′′A
ψ′′B

)
=

(
SLLψA + SLRψB
SRLψA + SRRψB

)
. (21)

7I found it very helpful to do the algebraic manipulations using the program MAXIMA.
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Rewrite the equations of motion, eq. (19) as

0 = iS−1S

(
/∂ 0
0 /∂

)
S−1Sψ − S−1S

(
0 m
m M

)
S−1Sψ

= iS−1
(
/∂ 0
0 /∂

)
Sψ − S−1

(
m′′ 0
0 M ′′

)
Sψ

= S−1
(
i/∂ 0
0 i/∂

)
ψ′′ − S−1

(
m′′ 0
0 M ′′

)
ψ′′.

(22)

In the second line, we have used that

(
/∂ 0
0 /∂

)
is proportional to the identity

so it commutes with S. Now multiply on the left by S, and expand into the
“up” and “down” components of ψ′′ to get

i/∂ψ
′′

A −m′′ψ
′′

A = 0

i/∂ψ
′′

B −M ′′ψ
′′

B = 0
(23)

These equations are almost in canonical form (as will be seen shortly) except
that m′′ is negative (we’ll take care of that later by a rescaling of ψA by
−iγ5). However, although the equations are in (almost) canonical form,
the Lagrangian is not. So before the final set of transformations to canonical
form, we will need to inspect the Lagrangian and rescale (aka renormalize)
the fields. The reason for all this, will turn out to be a consequence of the
fact that S is not unitary.

We start the analysis of the Lagrangian by rewriting LK as

LK =
1

2

(
iψ̄

(
/∂ 0
0 /∂

)
ψ − ψ̄

(
0 m
m M

)
ψ

)
,

where, as a reminder ψ is defined to be

(
ψA
ψB

)
and ψA,B are defined in eqs.

(18). Then, similarly to what we did in eq. (22),

LK =
1

2

(
iψ̄S−1S

(
/∂ 0
0 /∂

)
S−1Sψ − ψ̄S−1S

(
0 m
m M

)
S−1Sψ

)
=

1

2

(
iψ̄S−1

(
/∂ 0
0 /∂

)
Sψ − ψ̄S−1

(
m′′ 0
0 M ′′

)
Sψ

)
=

1

2

(
iψ̄′′

(
S−1
)†

S−1
(
/∂ 0
0 /∂

)
ψ′′ − ψ̄′′

(
S−1
)†

S−1
(
m′′ 0
0 M ′′

)
ψ′′
)
.

(24)
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Using the values of S and S−1 obtained in eq. (20), we get

(
S−1
)†

S−1 =
1

2

(
1 + M√

4m2+M2 0

0 1− M√
4m2+M2

)
.

Substitute this into eq. (24) and expand ψ′′ into its components to get

LK = i

(
1 + M√

4m2+M2

4

)
ψ̄′′A/∂ψ

′′
A + i

(
1− M√

4m2+M2

4

)
ψ̄′′B /∂ψ

′′
B

+
m2

2
√

4m2 +M2
ψ̄′′Aψ

′′
A −

m2

2
√

4m2 +M2
ψ̄′′Bψ

′′
B

(25)

Notice that ψ′′A =

(
ψ

′′U
A

iσ2ψ
′′U∗
A

)
and ψ′′B =

(
ψ

′′U
B

iσ2ψ
′′U∗
B

)
. These equalities follow

from eq. (18) where ψDA,B = iσ2ψ
U∗
A,B. This fact can be used to expand LK

into terms involving only ψ
′′U
A and ψ

′′U
B .

LK = i

(
1 + M√

4m2+M2

2

)
ψ

′′U†
A σ̄µ∂µψ

′′U
A + i

(
1− M√

4m2+M2

2

)
ψ

′′U†
B σ̄µ∂µψ

′′U
B

−i m2

2
√

4m2 +M2
(ψ

′′UT
A σ2ψ

′′U
A − ψ

′′U†
A σ2ψ

′′U∗
A ) + i

m2

2
√

4m2 +M2
(ψ

′′UT
B σ2ψ

′′U
B − ψ

′′U†
B σ2ψ

′′U∗
B )

(26)
This equation can be converted to canonical form by redefining the fields

and masses so that

ψ′A = −γ5

√
1 + M√

4m2+M2

2
ψ′′A

ψ′B =

√
1− M√

4m2+M2

2
ψ′′B

m′ =
m2

√
4m2 +M2

(
1 + M√

4m2+M2

2

)−1

M ′ =
m2

√
4m2 +M2

(
1− M√

4m2+M2

2

)−1
(27)

Then

LK = iψ
′U†
A σ̄µ∂µψ

′U
A + iψ

′U†
B σ̄µ∂µψ

′U
B

+ i
m′

2
(ψ

′UT
A σ2ψ

′U
A − ψ

′U†
A σ2ψ

′U∗
A ) + i

M ′

2
(ψ

′UT
B σ2ψ

′U
B − ψ

′U†
B σ2ψ

′U∗
B )

(28)
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which is in the Majorana canonical form as promised.
In summary, we have found that our theory describes two Majorana

fermions with (Majorana) masses m′ and M ′. A popular hypothesis is that
m is on the order of the electroweak scale ≈ 100 GeV and that M is on the
order of the Planck scale ≈ 1019GeV. Then m�M and we can expand the
terms as

m′ ≈ m2

M
, M ′ ≈M. (29)

9 Relationship of the massive Majorana par-

ticles to the neutrino interactions with weak

vector mesons etc.

The fields which appear in the original interaction terms with weak vector
mesons (or in the 4-fermi theory) are νL and ν̄L. More recently, after the
discovery of neutrino masses, there are additional fields νR and ν̄R. However,
none of those fields can be interpreted as particle fields. A particle field is
associated with particles of definite mass. The νL and νR fields are mixtures
of the definite-mass fields ψ

′U
A and ψ

′U
B which we’ve derived above. In what

follows, we write out the mixture in a few limiting cases.
It is helpful to gather the various defining transformations in one place.

From eq.(18) we have

ψA =

(
νL

iσ2ν
∗
L

)
, ψB =

(
−iσ2ν∗R
νR

)
. (30)

From eq. (20) we have

S =

(
SLL SLR
SRL SRR

)
=

(
1 M−

√
M2+4m2

2m

1
√
M2+4m2+M

2m

)
(31)

and from eq. (21)

ψ′′ ≡ S

(
ψA
ψB

)
. (32)

In the above equations, we have suppressed the implicit factor of the identity
matrix I4x4 in each of the matrix blocks. From eq. (27) we have

(
ψ′′A
ψ′′B

)
=


−γ5

√
2

1+ M√
4m2+M2

ψ′A√
2

1− M√
4m2+M2

ψ′B

 (33)

15



These equations lead to the following expressions for νR and νL in terms
of the Majorana fields:

νL = ψUA , νR = ψDB , (34)

where (
ψA
ψB

)
= S−1


−γ5

√
2

1+ M√
4m2+M2

ψ′A√
2

1− M√
4m2+M2

ψ′B

 (35)

and we can compute

S−1 =
1√

4m2 +M2

(√
4m2+M2+M

2

√
4m2+M2−M

2

−m m

)
. (36)

Altogether

νL =
1√

m′ +M ′

(√
M ′ψ

′U
A +

√
m′ψ

′U
B

)

=
1

(4m2 +M2)
1
4

√√4m2 +M2 +M

2
ψ

′U
A +

√√
4m2 +M2 −M

2
ψ

′U
B


νR =

1√
m′ +M ′

(√
m′ψ

′U
A +

√
M ′ψ

′U
B

)
=

1

(4m2 +M2)
1
4

√√4m2 +M2 −M
2

ψ
′D
A +

√√
4m2 +M2 +M

2
ψ

′D
B


(37)

These equations express the usual neutrino fields (appearing in weak inter-
action terms) as superpositions of the massive Majorana fields ψUA and ψDB .

9.1 m << M

Expand the square-root in eqs. (37) and use eq. (30) to get νL and νR.

νL =

(
1− m2

2M2

)
ψ

′U
A − i

m

M

(
1− 3m2

2M2

)
σ2ψ

′∗D
B + ...,

νR =

(
1− m2

2M2

)
ψ

′D
B + i

m

M

(
1− 3m2

2M2

)
σ2ψ

′∗U
A + ....

(38)
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9.2 M=0

This should lead to the interpretation of neutrinos as Dirac particles of the

form ψ =

(
νL
νR

)
. Substituting M = 0 into eq. (37), we obtain

νL =
1

2

(
ψ

′U
A + ψ

′U
B ,
)

νR =
1

2

(
ψ

′D
A + ψ

′D
B ,
) (39)

or

ψ =
1

2
(ψ′A + ψ′B) . (40)

Both ψ′A and γ5ψ
′
B satisfy the Majorana conditions and therefore are Majo-

rana fields. This demonstrates a point made at the beginning: Massive Dirac
fields can be constructed out of two Majorana fields, and therefore a Dirac
field theory is simply a special case of a field theory of a pair of Majorana
fields.

10 Particles instead of fields

This section starts with some elaboration of parts of section (5). Assume that
there is a unique vacuum |0〉 which is invariant under the symmetries to be
discussed in what follows. In the standard model, there is actually a family
of vacua that transform into one another via a subgroup of SU(2) x U(1),
and symmetry is broken by the selection of one of those vacua. However, we
can ignore that for now.

We define the following (normalized) single-particle states using the canon-
ical solutions for ψ′A and ψ′B – given respectively in terms of annihilation and
creation operators subscripted by A and B. So

|A, p, s〉 =
1√
2ωm′

p

a†
′s
Ap|0〉 , |B, p, s〉 =

1√
2ωM ′

p

a†
′s
Bp|0〉 (41)

and (normalized) single-antiparticle states:

|Ā, p, s〉 =
1√
2ωm′

p

b†
′s
Ap|0〉 , |B̄, p, s〉 =

1√
2ωM ′

p

b†
′s
Bp|0〉. (42)

The momentum is on the mass-shell. The term particle is used to denote8 a
set of states that include |A, p, s〉 = 1√

2ωm′
p

a†
′s
Ap|0〉 and mix only among them-

selves under Poincaré transformations. Similarly with the term antiparticle.

8See Schwartz p. 110
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When we apply Majorana constraints, we find from eqs. (11), the rela-
tionships between the states:

|Ā, p, s〉 = −iσss′2 |A, p, s′〉
|B̄, p, s〉 = iσss

′

2 |B, p, s′〉
(43)

That is, the antiparticle states are particle states. Notice that the B states
transform with opposite signs to the A states. This is because the A particles
are defined by the creation operators for the ψ′A field, which was obtained
from the ψ′′A field that satisfies ψ

′′C
A = −iγ2ψ

′′∗
A = ψ′′A, by multiplying by a

term proportional to γ5. In other words, ψ
′C
A = iγ2ψ

′∗
A .

Next, derive wavefunctions u and v as follows (see section (5) for more
information). First define

Φ(x) = ψ
′∗
A (x) + ψ′A(x) + ψ

′∗
B (x) + ψ′B(x).

Then
e−ipxu

′s
A(m′, p) = 〈0|Φ(x)|A, p, s〉

e−ipxv
′s∗
A (m′, p) = 〈0|Φ(x)|Ā, p, s〉

e−ipxu
′s
B(M ′, p) = 〈0|Φ(x)|B, p, s〉

e−ipxv
′s∗
B (M ′, p) = 〈0|Φ(x)|B̄, p, s〉.

(44)

To illustrate how we can work with these wavefunctions, define the charge-
conjugation operation on the single-particle states by

|Ā, p, s〉 → −iσss′2 |A, p, s′〉
|B̄, p, s〉 → iσss

′

2 |B, p, s′〉.
(45)

By applying this to the single-particle states in eq. (44), we find that

v
′s∗
A → −iσss

′

2 u
′

As′

v
′s∗
B → iσss

′

2 u
′

Bs′ ,
(46)

which is the same as
v

′s
A → −iγ2v

′s∗
A

v
′s
B → iγ2v

′s∗
B

(47)

This illustrates the connection between wavefunction charge-conjugation and
particle charge-conjugation (which derives from field charge-conjugation).
Overall, I don’t find the wavefunction approach especially helpful since its
connection to either particles or fields – both of which I have a better feeling
for – is a bit indirect.
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Now let’s return to the single-particle picture. In the previous section
on the neutrino and Majorana particles, we ended up with eqs. (37) which
relates the neutrino fields νR and νL, to the Majorana fields ψ′A and ψ′B.
The Majorana fields are associated with the elementary particles |A, p, s〉
and |B, p, s〉 which are also their own antiparticles. The neutrino fields of
the last section are NOT associated with elementary particles. We could
rewrite the Lagrangian and therefore the entire theory, purely in terms of
the Majorana fields and their associated Majorana particles.

However, there’s one more step required in order to connect this
formalism to experimental observations of particles. We identify the
light Majorana particle (associated with field ψ′A) as the neutrino! So, even
though the neutrino-field isn’t associated with an elementary particle, the
light Majorana field is, and we call that particle the neutrino.

Why the odd distinction between the name of the field (ψ′A)and the name
of the particle (ν)? That comes about from consideration of the neutrino
interactions with electro-weak vector bosons and Higgs bosons. Those in-
teractions are described in terms of fields rather than the particles. The
interaction of the Majorana particles with the W± and Z bosons, for ex-
ample, is specified by the Lagrangian term involving the νL field (which is
a particular sum of the Majorana fields) and those bosons. Similarly, the
sterility of νR becomes a statement about the non-interactivity of a different
sum of the 2 Majorana fields.

The effect is exactly of the same nature as one would have if, for example,
one were to examine the interactions of an electromagnetic field with two
charged elementary particles of different flavors. The interaction term would
appear as a sum. When translated into Feynman diagrams, the effect is to
have graphs with two kinds of vertices – one involving the bosons and ψ′A
and the other involving the bosons and ψ′B. Their relative coupling constants
are determined by the coefficients in the linear decomposition of the neutrino
field.

So, looking at the first of eqs. (37), we see that the coupling of the bosons
to |A, p, s〉 (which we call ‘the neutrino’ or even more precisely |νL, p, s〉) is

proportional to
√
M ′√

m′+M ′ and the coupling to |B, p, s〉 (which we call the sterile

neutrino and which we write as |νR, p, s〉)is proportional to
√
m′√

m′+M ′ .
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A Solutions of the Dirac equation for mo-

mentum in the y direction

The expression of u and v spinors for general momenta is given by Schwartz
on p. 191, and requires calculating the squareroots of matrices.

us(p) =

(√
p · σξs√
p · σ̄ξs

)
, vs(p) =

( √
p · σηs

−
√
p · σ̄ηs

)
(48)

where σ and σ̄ are defined just after eq. (4), and

ξ1 =

(
1
0

)
, ξ2 =

(
0
1

)
, η1 =

(
1
0

)
, η2 =

(
0
1

)
. (49)

There is a trick for calculating, for example,
√
σ · p

(
0
1

)
. Notice that σ ·p

can be diagonalized by a similarity transformation S. That is, S(σ · p)S−1 =(
e1 0
0 e2

)
. Then notice that if X is a matrix, and f(X) is a polynomial

function of that matrix, we have Sf(X)S−1 = f(SXS−1). By a Taylor
expansion argument, we can apply this observation to σ · p.

√
σ · p

(
0
1

)
= S−1S(

√
σ · p)S−1S

(
0
1

)
= S−1(

√
Sσ · pS−1)S

(
0
1

)
= S−1

√(
e1 0
0 e2

)
S

(
0
1

)
= S−1

(√
e1 0
0
√
e2

)
S

(
0
1

)
(50)

Let’s apply this to the case pµ = (E, 0, py, 0). Then9

p · σ =

(
E ipy
−ipy E

)
(51)

S can be constructed out of the eigenvectors of p · σ (for which MAXIMA is
a great tool) and we get

S =

(
1 −i
1 i

)
,S−1 =

1

2

(
1 1
i −i

)
(52)

9It’s pretty easy to get messed up with summation conventions along with lowering-
raising index conventions. I’ve tried to be self-consistent, but if I messed up, the worst
would be a sign-reversal of the spacial momenta.
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Then

S−1p · σS =

(
E − py 0

0 E + py

)
(53)

and
√
p · σ

(
0
1

)
= S−1

(√
E − py 0

0
√
E + py

)
S

(
0
1

)
=

1

2

(
i(
√
E + py −

√
E − py)√

E + py +
√
E − py

) (54)

Similarly, other components of us and vs can be calculated.
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