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1 Introduction

These notes are an extension of the notes from February previously entitled
Introducing the Dirac Equation. At the time, these notes followed the outline
below up to the point “Deriving the Dirac equation from a Larangian”.

We then detoured into Lorentz-group representation theory, with the ob-
jective of deriving the Dirac Lagrangian, which had led to the Dirac equation
which we’d explored in these notes.

Now, in section (7) we’ll return to the Dirac Lagrangian and solve its
equations of motion – namely the Dirac equation. We’ll also find out how
what particles and antiparticles are described by the theory.

2 An extremely brief history

Physicists knew that the Klein-Gordon equation was Lorentz invariant:(
∂20 − ∂21 − ∂22 − ∂23 +m2

)
φ(x).

However, Dirac wanted (for various reasons) wanted a Lorentz-invariant
equation linear in derivatives. If there weren’t all those terms, you could
take the square-root.

If one only knew how to take a square root, then it would seem obvious
that the following expression would also be Lorentz invariant.√

(∂20 − ∂21 − ∂22 − ∂23 +m2)φ(x).

Dirac figured out a way to take the square root (sort of).
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3 Outline

� Defining and explaining the Dirac equation for 2-spinors and 4-spinors

� Showing that the Dirac equation for 2-spinors is Lorentz invariant and
for 4-spinors is also parity invariant

� Deriving the Dirac equation from a Lagrangian

� Deriving the Lagrangian from symmetry representation theory

– Go over solutions to the Lorentz symmetry exercises

– Show how these can be used to hypothesize a Lagrangian

� Quantizing the Lagrangian theory – anticommutation relations

� Solving the Dirac equation

– Particles and antiparticles

4 Defining and explaining the Dirac equation

I will follow Lancaster chapter 36 but in a different order to better connect
(later) to the formal symmetry theory we’ve been looking at.

We will constantly use the Pauli spin matrices so here they are to remind
you.

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(1)

and write σ as the 3-tuple (σ1, σ2, σ3).
Note: I will use the term “spinor”. A spinor is just a vec-

tor which transforms a certain way under a representation of the
Lorentz group. In this section, we don’t care about the transfor-
mation properties so just think of spinors as vectors.

4.1 2-spinors

The 2-spinor equations don’t have mass terms. There are 2 distinct Dirac1

equations for 2-spinors (or if you prefer, 2-vectors).

1I refer to all these kinds of equations as “Dirac” equations, although Dirac’s origi-
nal equation was only for 4-spinors, sometimes known as Dirac spinors. These 2-spinor
equations are often known as Weyl equations and the 2-spinors are known as Weyl spinors.
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� i(I2∂0 + σ ·∇)ψR(x) = 0.

Unpack this and then compare to Lancaster eq. (36.14).

– Recall that ∂0 ≡ ∂
∂x0

, and∇ is the vector (∂1, ∂2, ∂3) = ( ∂
∂x1
, ∂
∂x2
, ∂
∂x3

).

– The symbol I2 means the matrix

(
1 0
0 1

)
. [Sometimes that symbol

is dropped for convenience, resulting in an equation that looks like
i(∂0 − σ ·∇)ψR(x) = 0.]

– Another notational convention (which I don’t love) is to replace
the symbol i∂0 by p̂0 and −i∇ by p̂. Then our equation looks like
(p̂0 − σ · p̂)ψR(x) = 0 (which is exactly Lancaster eq. (36.14)).

– Write everything out in components.

i

((
∂0 0
0 ∂0

)
+

(
0 ∂1
∂1 0

)
+

(
0 −i∂2
i∂2 0

)
+

(
∂3 0
0 −∂3

))(
ψ1
R(x)
ψ2
R(x)

)
=

(
0
0

)
.

– Multiply out the matrices to get(
(i∂0 + i∂3)ψ

1
R(x) + (i∂1 + ∂2)ψ

2
R(x)

(i∂0 − i∂3)ψ2
R(x) + (i∂1 − ∂2)ψ1

R(x)

)
=

(
0
0

)
. (2)

These are two linear differential equations in two unknowns.

� i(I2∂0 − σ ·∇)ψL(x) = 0.

Just like the prior equation, we can expand it out to get

i

((
∂0 0
0 ∂0

)
−
(

0 ∂1
∂1 0

)
−
(

0 −i∂2
i∂2 0

)
−
(
∂3 0
0 −∂3

))(
ψ1
L(x)
ψ2
L(x)

)
=

(
0
0

)
.

and then multiplying out the matrices, obtaining(
(i∂0 − i∂3)ψ1

L(x)− (i∂1 + ∂2)ψ
2
L(x)

(i∂0 + i∂3)ψ
2
L(x)− (i∂1 − ∂2)ψ1

L(x)

)
=

(
0
0

)
. (3)

4.2 4-spinors

The simplest 4-spinor equation will look like 2 copies of the 2-spinor equa-
tions, and will also lack mass terms. We will also consider a 4-spinor equation
with a mass term that mixes ψL and ψR. This equation is know as the “mas-
sive Dirac equation”. In the next section, we’ll investigate the question of
why mass terms shouldn’t be added to the 2-spinor equations.
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� The simplest 4-spinor equation.(
i(I2∂0 + σ ·∇) 0

0 i(I2∂0 − σ ·∇)

)(
ψR(x)
ψL(x)

)
= 0. (4)

Each block of the matrix is 2 x 2 and each entry in the vector is a
2-spinor. Therefore the matrix is 4 x 4 and the vector is of length 4.
This 4-spinor equation has exactly the same content as the two 2-spinor
equations in the last section so we think of it as reducible.

� 4-spinor equation with mass term.(
i(I2∂0 + σ ·∇) −mI2
−mI2 i(I2∂0 − σ ·∇)

)(
ψR(x)
ψL(x)

)
= 0. (5)

Multiply out, we get(
i(I2∂0 + σ ·∇)ψR(x)−mψL(x)
i(I2∂0 − σ ·∇)ψL(x)−mψR(x)

)
=

(
0
0

)
. (6)

We see that the top and bottom are two separate equations which mix
ψL and ψR. Compare to Lancaster eq. (36.14)

This is a version of the massive Dirac equation. However, people have
invented notation to make things look neater.

� First rewritten version of the Dirac equation.

i

[(
I2 0
0 I2

)
∂0 +

(
σ1 0
0 −σ1

)
∂1 +

(
σ2 0
0 −σ2

)
∂2 +

(
σ3 0
0 −σ3

)
∂3 −

(
0 mI2
mI2 0

)](
ψR(x)
ψL(x)

)
=

(
0
0

)
.

� Standard form of the Dirac equation (in the Weyl representation).

First rewrite the above equation by inserting before

(
ψR(x)
ψL(x)

)
, the ma-

trix product I4 =

(
0 I2
I2 0

)(
0 I2
I2 0

)
. Then the left-most of those 2

matrices in the product should be multiplied (on the right) by all the
terms that precede it, and the right-most of those 2 matrices should be
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multiplied by

(
ψR(x)
ψL(x)

)
, resulting in

(
ψL(x)
ψR(x)

)
. The end result of these

manipulations is

i

[(
0 I2
I2 0

)
∂0 +

(
0 σ1
−σ1 0

)
∂1 +

(
0 σ2
−σ2 0

)
∂2 +

(
0 σ3
−σ3 0

)
∂3

](
ψL(x)
ψR(x)

)
=

(
mI2 0
0 mI2

)(
ψL(x)
ψR(x)

)
.

(7)

Compare Lancaster eq. (36.13).

� Gamma matrix notation.

The equation can be simplified by defining some new matrices,

γ0 =

(
0 I2
I2 0

)
, γi =

(
0 σi
−σi 0

)
(8)

and also defining ψ(x) =

(
ψL(x)
ψR(x)

)
. Compare the γ matrices with

Lancaster eqs. (36.9), (36.10) and notice also that Lancaster writes
out all 4x4 components in eq. (36.8).

Then eq. (7) becomes the canonical Dirac equation.

iγµ∂µψ(x) = mψ(x).

Compare Lancaster eq. (36.12).

The γ matrices are technically called “Dirac matrices in the Weyl rep-
resentation”. An even more streamlined notation is attributed to Feyn-
man, using the Feynman slash notation

/∂ ≡ γµ∂µ.

In that notation, the Dirac equation becomes(
i/∂ −m

)
ψ(x) = 0.

� Dirac algebra.

By direct computation, you can show that

{γµ, γν} ≡ γµγν + γνγµ = 2gµν
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where gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

.

Compare Lancaster eq. (36.3). These relations are known as the Dirac
algebra, which is a special case of a Clifford algebra.

� Other representations.

If you make a similarity transform on the γ matrices, that will preserve
the Dirac algebra but will change the form of the Dirac matrices. If
you define γ

′µ = SγµS−1 and ψ′(x) = Sψ(x), then it’s easy to show (go
ahead, do it) that

i(/∂
′ −m)ψ′(x) = 0

where /∂
′

is defined with γ
′µ instead of γµ.

5 Lorentz invariance

If we can find a linear transformation on ψL etc., which preserves the form
of the Dirac equation under a change of reference frame, then we say the
Dirac equation is Lorentz invariant. To simplify things, only look at
rotations and boosts around the z-axis.

5.1 2-spinors

5.1.1 ψR equation

� Start with i(I2∂0 + σ ·∇)ψR(x) = 0.

� Propose transformation laws:

z-rotation by θ:

ψR(x′) =

(
ei

θ
2ψ

′1
R

e−i
θ
2ψ

′2
R

)
(x′).

where x′ = (t′, x′, y, z′) = (t, x cos θ − y sin θ, x sin θ + ycosθ, z).

z-boost by β:

ψR(x′′) =

(
e−

β
2ψ

′′1
R

e
β
2ψ

′′2
R

)
(x′′).

where x′′ = (t′′, x′′, y′′, z′′) = (t cosh β+z sinh β, x, y, t sinh β+z cosh β).
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� Apply chain rule as we’ve done numerous times before. For example:

∂1ψR(x) =
∂

∂x
ψR(x) =

(
∂x′

∂x

∂

∂x′
+
∂y′

∂x

∂

∂y′

)
ψR(x′)

=

(
cos θ

∂

∂x′
+ sin θ

∂

∂y′

)
ψR(x′)

(9)

and

∂0ψR(x) =
∂

∂t
ψR(x) =

(
∂t′′

∂t

∂

∂t′′
+
∂z′

∂t

∂

∂z′′

)
ψR(x′′)

=

(
cosh β

∂

∂t′′
+ sinh β

∂

∂z′′

)
ψR(x′′)

(10)

� Now check Lorentz invariance of the z-rotation of our Dirac (Weyl)
equation i(I2∂0 + σ ·∇)ψR(x) = 0. Start with the expansion of eq. 2(

(i∂0 + i∂3)ψ
1
R(x) + (i∂1 + ∂2)ψ

2
R(x)

(i∂0 − i∂3)ψ2
R(x) + (i∂1 − ∂2)ψ1

R(x)

)
=

(
0
0

)
(11)

Then apply the field transformations and chain rule to this equation.(
ei

θ
2 (i∂′0 + i∂′3)ψ

′1
R (x′) + e−i

θ
2 eiθ(i∂′1 + ∂′2)ψ

′2
R (x′)

e−i
θ
2 (i∂′0 − i∂′3)ψ

′1
R (x′) + ei

θ
2 e−iθ(i∂′1 − ∂′2)ψ

′2
R (x′)

)
=

(
0
0

)
. (12)

This simplifies to(
ei

θ
2

(
(i∂′0 + i∂′3)ψ

′1
R (x′) + (i∂′1 + ∂′2)ψ

′2
R (x′)

)
e−i

θ
2

(
(i∂′0 − i∂′3)ψ

′1
R (x′) + (i∂′1 − ∂′2)ψ

′2
R (x′)

)) =

(
0
0

)
. (13)

and even simpler(
ei

θ
2 0

0 e−i
θ
2

)(
(i∂′0 + i∂′3)ψ

′1
R (x′) + (i∂′1 + ∂′2)ψ

′2
R (x′)

(i∂′0 − i∂′3)ψ
′1
R (x′) + (i∂′1 − ∂′2)ψ

′2
R (x′)

)
=

(
0
0

)
. (14)

We see that you can factor out the first matrix (since the RHS is 0)
and get a form identical to eq. (11). So rotational invariance (around
the z-axis)has been demonstrated.

� Can we introduce a mass term in the Weyl equation? Let’s try i(I2∂0 +
σ ·∇)ψR(x) = mψR(x). If you now see how that mass term transforms,
you get(
ei

θ
2 0

0 e−i
θ
2

)(
(i∂′0 + i∂′3)ψ

′1
R (x′) + (i∂′1 + ∂′2)ψ

′2
R (x′)

(i∂′0 − i∂′3)ψ
′1
R (x′) + (i∂′1 − ∂′2)ψ

′2
R (x′)

)
=

(
ei

θ
2 0

0 e−i
θ
2

)
m

(
ψ

′1
R (x′)
ψ

′2
R (x′)

)
.
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You can divide by

(
ei

θ
2 0

0 e−i
θ
2

)
on both sides, again ending up with an

equation of the same form that we started with. So again, we’ve shown
rotational invariance. You might wonder why we didn’t start with a
mass term.

� Check Lorentz invariance of the z-boost of our massless Weyl equation.
Following the same procedures as before, we obtain(

e
β
2 0

0 e−
β
2

)(
(i∂′′0 + i∂′′3 )ψ

′′1
R (x′′) + (i∂′′1 + ∂′′2 )ψ

′′2
R (x′′)

(i∂′′0 − i∂′′3 )ψ
′′1
R (x′′) + (i∂′′1 − ∂′′2 )ψ

′′2
R (x′′)

)
=

(
0
0

)
. (15)

Dividing by the first matrix, we end up with the Weyl equation again,
so we’ve now shown that the equation is boost-invariant (in the z-
direction.)

� What about the massive Weyl equation? The mass term on the right-

hand side will transform to

(
e−

β
2 0

0 e
β
2

)
m

(
ψ

′′1
R (x′′)

ψ
′′2
R (x′′)

)
. Unlike the situ-

ation with rotations, the first matrix on the RHS doesn’t cancel the first
matrix on the LHS. So with the mass term, the Weyl equation is
NOT boost-invariant! A mass term breaks Lorentz invariance
in the Weyl equation.

5.1.2 ψL equation

� Start with i(I2∂0 − σ ·∇)ψL(x) = 0.

� Propose transformation laws:

z-rotation by θ:

ψL(x′) =

(
ei

θ
2ψ

′1
L

e−i
θ
2ψ

′2
L

)
(x′).

where x′ = (t′, x′, y, z′) = (t, x cos θ − y sin θ, x sin θ + ycosθ, z). This is
the same transformation proposed for ψR.

z-boost by β:

ψL(x′′) =

(
e

β
2ψ

′′1
L

e−
β
2ψ

′′2
L

)
(x′′).

where x′′ = (t′′, x′′, y′′, z′′) = (t cosh β+z sinh β, x, y, t sinh β+z cosh β).
This transformation differs from ψR by switching the sign of β.
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� The analysis of rotational and boost invariance proceeds just as before.
Since rotational transformations are the same for ψL as for ψR, the
Weyl equation is again rotationally invariant. And just as before, the
massive Weyl equation for ψL breaks Lorentz invariance.

� A trick! Notice that our boost transformation rule for ψL is ψL(x′′) =(
e

β
2 0

0 e−
β
2

)(
ψ

′′1
L

ψ
′′2
L

)
. The matrix prefactor is exactly the same as the

one on the left of the Weyl equation for ψR (see eq. (15)). So, if on

the RHS of the right-Weyl equation (15) , we put m

(
ψ

′′1
L

ψ
′′2
L

)
, then the

prefactors will cancel out and the equation will be boost-invariant. In
summary,

i(I2∂0 + σ ·∇)ψR(x) = mψL(x) (16)

IS a Lorentz-invariant equation. There are some details you might
want to verify like the rotational invariance.

Similarly,
i(I2∂0 − σ ·∇)ψL(x) = mψR(x) (17)

is also Lorentz-invariant.

5.2 4-spinors

We’ve done all the hard work! Way back in eq. (6), or if you prefer, Lancaster
eq. (36.14), we showed that the Dirac equation was equivalent to the two
equations examined above:

i(I2∂0 + σ ·∇)ψR(x) = mψL(x)

i(I2∂0 − σ ·∇)ψL(x) = mψR(x)
(18)

But we showed that these were Lorentz-invariant. Therefore the mas-
sive (and massless) Dirac equation is Lorentz-invariant! What we’ve
also seen, is that you can’t make a Lorentz-invariant theory out of only one
2-spinor. That’s why electrons (which are massive) are represented by 4-
spinors.

5.3 Parity

So far, we’ve only discussed rotations and boosts. But most of our experience
with natural laws, tells us we can’t distinguish left from right. That’s called
parity invariance. The transformation that accomplishes this, must take
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(x,y,z) to −(x,y,z), while leaving the t-component alone. There’s a simple
group property. Do a parity-transform twice, and you end up where you
started. So we describe the transformation under parity as, for example,

ψ′L(t′, x′, y′, z′) = PψL(t,−x,−y,−z) (19)

where P2 = I. Now consider the massless Weyl equation i(I2∂0 − σ ·
∇)ψL(x) = 0. Under the parity transformation, this becomes i(I2∂0 + σ ·
∇)PψL(x) = 0. For this to be a symmetry, we’d need to find a matrix P so
that PσiP = −σi for each i. It can’t be done. Therefore the massless Weyl
equation violates parity.

This is important, because neutrinos were once thought to be massless
and could therefore be described by a 2-spinor with the Weyl equation. This
description would therefore result in a parity-violating theory. In fact, it
turns out that the complete theory of neutrinos and their interactions are
parity-violating.

6 The Dirac Lagrangian

For now, this section is brief. The Dirac action is taken to be

S =

∫
d4xL =

∫
d4xψ†(x)γ0

(
i/∂ −m

)
ψ(x) (20)

where L is the Lagrangian. The Euler-Lagrange equations (equations of
motion) include the equation

∂µ
∂L

∂(∂µψ†)
− ∂L
∂ψ†

= 0. (21)

Since the field ψ† doesn’t appear in the Lagrangian with any derivatives, the
first term of the equation is 0. The remaining equation becomes

−γ0(i/∂ −m)ψ(x) = 0. (22)

We can factor out the γ0, leaving the Dirac equation.
The point of this section, is that when we want to construct Lorentz-

invariant equations of motion, we often do that by first constructing a Lorentz-
invariant Lagrangian. A Lagrangian is just a real number, so for Lorentz-
invariance, the Lagrangian is a scalar – i.e. it is unchanged by a Lorentz
transformation. I haven’t demonstrated this, but that’s where we’re head-
ing.
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7 Quick Review

7.1 The Program of Quantum Field Theory

� We start with a Lagrangian which is Lorentz invariant.

� An example: The free theory of the electron is described by the Dirac
Lagrangian.

� Another example: The interacting theory of the electron with electro-
magnetism is described by a Lagrangian of free electrons and photons
plus an interactive term which we treat as a perturbation.

� We learned, when we studied path integrals, that we could compute all
Green’s functions – which are used to obtain the scattering matrix –
by moments of a probability measure specified by the integral of the
action (integral of Lagrangian).

� Those moments can be computed exactly for free Lagrangians such as
the free electron and free photon Lagrangian

� The interactive term can be expanded as a Taylor series of moments
with respect to a free-Lagrangian measure.

� This series can be systematically examined by using schematics, called
Feynman diagrams, that represent integrals.

7.2 An intermediate step: Particles

� The above program is built on the theorem that the S-matrix can be
computed from the Green’s functions (the LSZ theorem).

� That theorem requires a connection between free fields and particles,
which we come to next.

� First we solve the Dirac equation as though the fields in the Lagrangian
were complex-valued functions.

� Then we promote those fields to operators. The only thing we need
to know about the field operators are their commutation relations (re-
member, they aren’t commutative).

� From that, we can establish the Hilbert space of states on which the
operators act, and we find these states represent particles and antipar-
ticles.
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8 Solving the Dirac equation and anticom-

mutation relations

Start with the Dirac equation in the form of eq. (7) and simplify notation

by writing ψ =

(
ψL
ψR

)
. This is a set of 4 linear differential equations (one for

each component) and these can be solved. For now, we assume that ψ is a
complex-valued function.

There’s no good reason for us to describe how one arrives at a solution.
Instead, let’s write down the answer and make sure we understand what it
is. First, we write the answer in a general form.

ψ(x) =
2∑
s=1

∫
d3p

(2π)3
1√
2ωmp

(
aspu

s(p)e−ipx + bs∗p v
s(p)eipx

)
, (23)

where ωmp =
√

p2 +m2 = p0. In the above expression, for each index value s,
us(p) and vs(p) have 4 complex components. asp and bsp each have 1 complex
component. In the exponents, the term px means ωmp x0−p · x. The index s
over which we sum, is called the “spin”.

You might wonder why we separately factor out asp and bsp since these could
have been absorbed in us(p) and vs(p). In fact, we have a lot of freedom in
how to choose those vectors. Nothing up to this point helps us decide which
basis set to use. However, a little later, we will invoke anti-commutation
relations and if we choose the vectors us(p) and vs(p) in just “the right way”,
we’ll be able to interpret asp and bsp as particle and antiparticle annihilation
operators.

So, armed with this foresight, we’ll display an appropriate set of solutions
for 4-momenta that look like pµ = (E, 0, py, 0).

u1(p) =
1

2


√
ωmp + py +

√
ωmp − py

i
(√

ωmp − py −
√
ωmp + py

)
√
ωmp + py +

√
ωmp − py

i
(√

ωmp + py −
√
ωmp − py

)
 , u2(p) =

1

2


i
(√

ωmp + py −
√
ωmp − py

)
√
ωmp + py +

√
ωmp − py

i
(√

ωmp − py −
√
ωmp + py

)
√
ωmp + py +

√
ωmp − py

(24)

v1(p) =
1

2


√
ωmp + py +

√
ωmp − py

i
(√

ωmp − py −
√
ωmp + py

)
−
√
ωmp + py −

√
ωmp − py

−i
(√

ωmp + py −
√
ωmp − py

)
 , v2(p) =

1

2


i
(√

ωmp + py −
√
ωmp − py

)
√
ωmp + py +

√
ωmp − py

−i
(√

ωmp − py −
√
ωmp + py

)
−
√
ωmp + py −

√
ωmp − py


In calculations of Green’s functions, the exact forms of the solutions matter
but for our purposes, we display the solutions just to illustrate that solutions
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can be found. Feel free to plug these into the Dirac equation to see that they
indeed are solutions.

There remain arbitrary coefficients, asp and bsp. We see from eq. (23) that
by performing some kind of inverse Fourier transform, and by plugging in
the appropriate values of us(p) (given above for momenta in the z-direction),
we can express asp and bsp as functions of ψ. We’ll write these functions as

asp = Fa(ψ, s, p)
bsp = Fb(ψ, s, p)

(25)

So far, asp, b
s
p and ψ(x) have all been complex numbers. But for quan-

tum mechanics we must promote them to be operators. Furthermore, the
quantization conditions are obtained from the Lagrangian by the equal-time
(x0 = y0 in the equations below) anti-commutation rules

{ψα(x),Πβ(y)} = iδ(x− y)δαβ

{ψα(x), ψβ(y)} = 0

{Πα(x),Πβ(y)} = 0.

(26)

where the anticommutator brace symbol has the meaning {A,B} = AB +
BA. The first of these equations becomes

{ψα(x),
∂L
∂ψ̇β

(y)} = {ψα(x), iψ†β(y)}

= iδ(x− y)δαβ

{ψα(x), iψβ(y)} = 0

{ψ†α(x), iψ†β(y)} = 0

(27)

The anti-commutator instead of the commutator is used for spin-1/2
fields. That turns out to be a deep consequence of the axioms of quantum
field theory – axioms which I haven’t provided but include things like causal-
ity etc. When the anti-commutator is used, we say the fields are fermion
fields, and the resulting particles (which we’re about to get to) are fermions.

Recall from eq. (25) that asp and bsp are expressed as functions of ψ.
Their adjoints are expressed as functions of ψ†. We can therefore employ the
anti-commutation relations of eq. (27) to obtain

{asp, a
†s′
p′ } = (2π)3δ3(p− p′)δss

′

{bsp, b
†s′
p′ } = (2π)3δ3(p− p′)δss

′

{asp, as
′

p′} = {a†sp , a
†s′
p′ } = {bsp, bs

′

p′} = {b†sp , b
†s′
p′ } = 0

(28)
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8.1 The Hilbert space

Thusfar, we’ve solved the Dirac equation and expressed it in terms of opera-
tors asp and bsp which satisfy the anticommutation relations of eq. (28). But
we haven’t said what space these operators act upon. That’s what we’ll do
next – to construct the underlying Hilbert space.

8.1.1 The Energy operator

First we need one more ingredient, also obtained from the Lagrangian. That
ingredient is the energy operator, E. One way to define that operator,
is as the conserved quantity associated by Noether’s theorem, with time-
translation symmetry. In any case, various texts derive E as

E =

∫
d3x

(
iψ†(x)∂tψ(x)

)
. (29)

Then, with some effort, we can expand the fields ψ and ψ† using eq. (23) to
obtain finally

E =
∑
s

∫
d3p

(2π)3
ωmp
(
as†p a

s
p − bspbs†p

)
. (30)

8.1.2 The Vacuum

OK. How do we construct a Hilbert space? To begin with, suppose (as is
required by the axioms of field theory) that the energy operator E is bounded
from below. Then there is an energy eigenstate in the Hilbert space, which
has the lowest energy eigenvalue. Let’s call this state |Ω〉. We call this state
the vacuum.2 Sometimes we write |0〉 although this is misleading because it
looks like ‘nothing’. The vacuum is a state like any other state, so it isn’t
more or less of anything.

8.1.3 A simplified theory

Now I’m going to greatly simplify things by considering a different example
that doesn’t involve integrals over p. I’ll change some notations so that we
don’t confuse this simplified theory with the real thing. So, in this simpli-
fied theory, there is only one annihilation operator ã with its corresponding

2Actually, nothing we’ve said so far implies that there is a unique vacuum. There
could, in principle, be multiple states with the same lowest eigenvalue. So, to avoid this,
we stipulate that an axiom of QFT is ‘the vacuum is unique’. In point of fact, there are
situations where that axiom is too restrictive, but for our purposes, let’s go with it.
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creation operator that satisfies the anticommutation relations

{ã, ã†} = 1

{ã, ã} = 0

{ã†, ã†} = 0

(31)

In this same theory, the energy operator is Ẽ = ω̃ã†ã. The lowest-energy
eigenstate will be denoted |Ω̃〉 and has energy eigenvalue E0, so

Ẽ|Ω̃〉 = E0|Ω̃〉.

8.1.4 What the annihilation operator does to the vacuum

We’ll now see that when we apply the annihilation operator ã to the vacuum
state, it will result in 0. That’s one reason we call it the annihilation operator.
Define

|Ω̃−〉 = ã|Ω̃〉.

Apply the energy operator

Ẽ|Ω̃−〉 = ω̃ã†ãã|Ω̃〉
= ω̃

(
−ãã†ã+ ã

)
|Ω̃〉

=
(
−ãẼ + ãω̃

)
|Ω̃〉

= (−E0 + ω̃)|Ω̃−〉.

(32)

But since ãã = 0 from the anticommutation relations, the first equality
above shows that Ẽ|Ω̃−〉 = 0. Therefore (−E0 + ω̃)|Ω̃−〉 = 0 from which we
conclude that either |Ω̃−〉 = 0 or (−E0 + ω̃) = 0. Which is it? Suppose it’s
the latter, so E0 = ω̃. In other words, the lowest energy eigenvalue is ω̃. But
by assumption |Ω̃−〉 6= 0 and we’ve just shown that Ẽ|Ω̃−〉 = 0. Therefore
|Ω̃−〉 is an eigenvector of the energy, with an eigenvalue of 0, which is less
than E0. That’s a contradiction and therefore we’ve proven that |Ω̃−〉 = 0 or
equivalently, that ã|Ω̃〉 = 0.

8.1.5 Particles – what the creation operator does to the vacuum

Still in this simplified theory, let’s see what the creation operator does to the
vacuum. First, notice that

Ẽ|Ω̃〉 = ω̃ã†
(
ã|Ω̃〉

)
= 0

(33)
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which shows that E0 = 0. Next, define the state |1〉 = ã†|Ω̃〉. We’ll see that
this is an eigenstate of the energy operator, with the eigenvalue ω̃.

Ẽ|1〉 = ω̃ã†ãã†|Ω̃〉
= ω̃

(
−ã†ã†ã+ ã†

)
|Ω̃〉

= ω̃ã†|Ω̃〉
= ω̃|1〉.

(34)

We’ve made use of the fact that ã†ã† = 0.
The interpretation (in this toy model) of the state |1〉 is that it is

a particle of energy ω̃. We obtained it by applying the creation operator
to the vacuum state. Hence the name creation operator.

8.1.6 Particles are field vibrations

You’ll sometimes hear that particles are just vibrations of a quantum field.
I’ve never been especially comfortable with that statement, although I sup-
pose it’s a good picture to carry in one’s head. My problem has to do with
the fact that a quantum field is an operator. I know what it means for a real-
valued function to vibrate. If the value of the function goes up and down as
a function of time or space, we say it’s vibrating. Or if we look at a complex
function, we can separately look at oscillations of the real and imaginary
parts. But it’s less clear to me what should be meant by the vibration or
oscillation of an operator.

Be that as it may, consider the field decomposition from before,

ψ∗(x) =
2∑
s=1

∫
d3p

(2π)3
1√
2ωmp

(
as†p u

∗s(p)eipx + bspv
∗s(p)e−ipx

)
. (35)

We now recognize that the operator-coefficients as†p are particle-creation op-
erators. For each momentum, those particle-creation operators are multiplied
by a vibratory term eipx with wave-style vibrations in time and space. We
can describe this as ‘a particle represented by a vibration of the field’. In
some sense, you can think of the field Fourier component (the ‘vibration’)
as having potentiality (don’t confuse this with potential energy) to create
a particle with that value of the momentum. If you like the terminology,
then what you see is that the field has the potential to create particles of
all possible momenta but all having the property that p20 − p · p = m2 (the
dispersion relation).

Notice that the minimum energy of any of these particles, is the mass m.

16



8.1.7 Fermi statistics

The notation |1〉 denotes a state with one particle. What happens when we
apply the creation operator to this state? Does it become a state with two
particles? We have

ã†|1〉 = ã†ã†|Ω̃〉
= 0

(36)

because ã†ã† = 0 from the anticommutation relations. So the creation op-
erator does not turn a 1-particle state into a 2-particle state. In fact, it
annihilates the 1-particle state.

This doesn’t necessarily prove that we can’t create states that would be
easily interpreted as 2-particle states. All we’ve shown is that we can’t do
this using creation operators. However, it turns out to be true that we can’t
do it any other way either.

Now let’s turn to the full theory we started with where we integrated
over momenta and summed over spins. We can apply the anti-commutation
operators in exactly the same kind of way we did in the simplified model,
but separately for each momentum and spin. The same argument as before
tells us that the vacuum is annihilated by all of the annihilation operators.
We could define states

|p, s〉 =
1√
2ωmp

as†p |Ω〉

to describe a single particle state of momentum p and spin s and by applying
the energy operator, we would see that it has energy ωmp . You should be
slightly bothered by the fact that we had an integral over momenta, so that
there is a continuum of states. But this kind of thing should be familiar from
plain old quantum mechanics, where we cavalierly sum over a continuum of
momentum states (for example).

But this still doesn’t give us our entire Hilbert space. what about a state
corresponding to the operation (on the vacuum) of a creation operator with
spin s and momentum p, followed by a creation operator with spin s′ and
momentum p′. Unlike the simplified case, this does not result in 0 because
the two creation operators are different. The resulting state describes one
particle with momentum p and spin s, and another particle with momentum
p′ and spin s′. The most general state is a state with an occupation number
of either 0 or 1 for each of the possible momenta and spins.

We say that such a Hilbert space describes fermions. Here you should
recognize the Pauli exclusion principle that says you can’t have more than
one particle in a single quantum state.
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8.1.8 Antiparticles

I’ve exclusively been talking about the asp operators. What about the bsp’s?
Those also appear in the energy operator. Recall from before

E =
∑
s

∫
d3p

(2π)3
ωmp
(
as†p a

s
p − bspbs†p

)
.

If we rewrite the terms involving the b operators as

−bspbs†p = bs†p b
s
p − (2π)3

and temporarily ignore the constant (−(2π)3), we see that the resulting ex-
pression is

E =
∑
s

∫
d3p

(2π)3
ωmp
(
as†p a

s
p + bs†p b

s
p

)
− ....

The b† operators behave in just the same way as the a† operators, but create
a completely different set of states which we call the antiparticle states. So
now our Hilbert space has been extended so that the states include both
particles and antiparticles. For each value of momentum and spin, there
is either one or no particles that have that value and similarly there is ei-
ther one or no antiparticles that have that value. The designations ‘particle’
and ‘antiparticle’, without interaction terms, don’t help us distinguish the
two kinds of particles. However, it’s worth noting that in the expansion
of the field operators, particle annihilation operators are the coefficients of
e−ipx and antiparticle creation operators are the coefficients of eipx. By con-
vention, and primarily for historical reasons, the first exponential is said to
describe positive frequencies, and the second exponential is said to describe
negative frequencies. In the early days of quantum mechanics, those two sit-
uations were associated with particles of positive energy and negative energy
respectively. However, that interpretation has long ago been replaced by the
particle/antiparticle interpretation.

8.1.9 The zero-point energy

In the above discussion of antiparticles, there was a constant term generated
from anticommuting the products of b operators. Such a term is present
for each momentum and spin, and since those appear in an integral over
momenta, the total is infinite. That total constant is known as the zero-point
energy and has been the subject of much hair-pulling.

The modern understanding of this constant, is that it plays no role in
physics – other than potentially physics that includes gravity (more in a
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moment). A similar kind of thing occurs in classical physics. Energy is
defined only up to a constant. That statement is common, but isn’t especially
meaningful unless we say how energy is defined. One definition is ‘energy
is a conserved quantity’. There are lots of conserved quantities, so that
definition isn’t all that illuminating, but it suffices to help us understand
that an overall constant would play no role since it appears both before
and after an interaction and thus makes no difference to the conservation
of energy. Another definition has to do with the relation between energy
and time-translation invariance (via Noether’s theorem). Again, an overall
constant energy difference has no significance in generating time translations.

The one exception to all of this is relativistic gravity (general relativity).
The source of gravity is the energy-momentum tensor, so an overall constant
would be expected to change the value of the source and thus change the
amount of gravitational attraction. Frankly, I haven’t examined the conse-
quences of zero-point energy (or other constants) to the theory of gravity. I
know it’s a subject of interest but haven’t properly examined how modern
physicists deal with this.

For our purposes, where gravity isn’t included in the theory, the constant
has no effect so we can simply get rid of it. Or, more elegantly, we can
subtract it by adding a term to the Lagrangian. One way this is done sys-
tematically is to assert that the terms in the Lagrangian are normal-ordered
– that is, when expanded in annihilation and creation operators, all products
of terms are re-ordered so that the annihilation operators appear on the left
and the creation operators appear on the right.
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