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Susskind, in his lecture on the Higgs phenomenon, covers a number of
topics from occasionally idiosyncratic viewpoints, and certainly eschewing
the abstract mathematical approach that we’ve been taking. Here are a few
items that caught my attention.

� Quantization of angular momentum

� Quantization of charge

� Meaning of the vacuum

� Mass is the frequency of chiral flips

� Condensates and the Higgs phenomenon

1 Quantization of angular momentum

Susskind says that the only two things we need to know about quantum
mechanics are

� Angular momentum is quantized.

� The Heisenberg uncertainty principle – if you know that the system is
at rest, then you don’t know how fast it’s moving and vice versa.

I want to concentrate for now on the angular momentum. You might
wonder why Susskind highlighted quantization rather than Schrodinger’s
equation or Hilbert spaces etc. And then you might wonder “why angu-
lar momentum rather than plain old momentum?” First of all, Susskind, by
discussing quanta, is highlighting the very first historical insight into quan-
tum mechanics, and arguably the driving force behind the entire evolution of
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the subject matter. The mathematics is, in many ways, a by-product of the
effort to explain both the cause and effect of quantization. I don’t want to
reconstruct the history of the subject, but instead will focus your attention
on the plain old Schrodinger equation.

It is simplest to imagine the quantum mechanics of a 2D space rather
than the real-world 3D space. I’m going to always take ~ = 1. Remem-
ber that plain old momentum has to do with linear motion in space. For
example, in the x-direction, the momentum operator is −i ∂

∂x
. This is the

quantum analogue of the classical variable px. You might remember that the
Schrodinger equation involves the action of the energy, or Hamiltonian, on a
state. In 2D classical mechanics, the energy (for a freely moving particle) is

E =
p2x + p2y

2m
.

So in QM, we have

H =

(
−i ∂

∂x

)2
+
(
−i ∂

∂y

)2
2m

.

Also remember that plane waves are “eigenstates” of the momentum op-
erator

−i ∂
∂x
e±i(kxx+kyy) = ±kxe±i(kxx+kyy),

and similarly with the y-momentum. Above, ±kx is the eigenvalue. Then,
since the Hamiltonian is proportional to the square of the momentum, the
plane waves are also eigenstates of the Hamiltonian. It should be stated that
plane waves, mathematically speaking, aren’t actually states of the Hilbert
space. They aren’t normalizable. However, there are reasonable ways of
extending the concept of Hilbert space to include plane waves. A similar
thing is also true of some condensates which I’ll consider later.

The reason I concentrated so much on linear momentum is that this is
NOT quantized. Any value of kx is permissible. You might recall that in a
system with boundary conditions, the linear momentum is quantized but in
“empty space” there aren’t any boundary conditions of that kind.

However, we’ll now see that angular momentum is quantized. In 2D,
angular momentum has to do with the circular motion around a center point,
measured by the angle θ. We describe the circularly-symmetric world with
circular coordinates – in this case θ. The angular momentum operator is

−i d
dθ
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. The eigenstates satisfy

−i d
dθ
e±in(2πθ) = ±n(2π)e±in(2πθ),

where n is an integer. The angular momentum eigenvalues are ±2πn. Why
is n an integer? Because the wavefunction better be the same after a rotation
of 2π as it was before rotation. We say that the coordinate is periodic. So
the angular momentum eigenvalues are quantized and we say ±n
are the values of the quanta.

What is the deep reason that angular momentum is quantized, but linear
momentum isn’t? It has to do with the fact that linear momentum is the
operator generating transformations of the linear coordinates i.e.

ψ(x)→ ψ(x+ δ)

and that angular momentum is the operator generating rotations

ψ(θ)→ ψ(θ + δ)

. We’ve encountered this concept when we were doing the fancy group theory
stuff. Remember the Lie Algebra? Those were the generators of rotations
in 3D. We mentioned that these were also known as the angular momentum
operators. Specifically, in terms of operators on the Hilbert space, angular
momentum J, is the operator which generates rotations as R(θ) = e−iJ·θ.

The reason that the angular-momentum eigenvalues are quantized, is that
rotations are a compact symmetry group (picture the group as closed and
bounded). By contrast, the translation group is unbounded. You can trans-
late by as much as you want and you don’t end up coming back to yourself
(unless you’re doing general relativity but that’s a story for another time).
It’s a feature of compact symmetry groups that the generators have discrete
(quantized) eigenvalues.1

1By the way, remember I said that the rotation quanta were ±n? We saw this came
about because a rotation of 2π has to bring the wavefunction back to itself. But does it?
In a quantum world, the wavefunction −ψ(x) is the same as ψ(x) because the phase can’t
be measured. We’ve encountered this before. It allowed us to consider wavefunctions
that have to go around by 4π before they return to themselves (familiar to quaternion
practitioners). We said this kind of thing isn’t really a rotation, but rather an element of
SU(2). Anyway, if the condition is that ei±2n(2π) = 1 then the eigenvalues are ±n2 (2π) or
said differently, the quanta are in units of n2 . And of course, that’s what permits electrons
to have spin 1

2 .
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2 Quantization of charge

Back to Susskind. Even though he speaks of quantization as related to angu-
lar momentum, his real interest isn’t angular momentum – which generates
rotational symmetry – but some other generator of a different compact group
(in particular, a compact subgroup of the group of weak and electroweak in-
teractions U(1) × SU(2).) He steers clear, as much as possible, from the
language of symmetry. Instead, he focuses on charge, which is a related con-
cept. Let’s make the connection. We visualize the field angular momentum
as measuring the angular motion of the field. Susskind depicts this by draw-
ing circles in his Mexican hat. He’s only using the angular momentum idea
to explain the key concept he’s interested in, namely charge. Just like an-
gular momentum has discrete eigenvalues roughly corresponding to angular
speed, so does our field theory symmetry generator have discrete eigenvalues
roughly corresponding to the tangent vector of some symmetry parameter.
On the Mexican hat, that parameter is given by the angle around the center
and Susskind calls2 the generator eigenvalues Zilch .3 Since the symmetry
generator has the same relationship to the angle, as momentum has to posi-
tion, Susskind then applies the Heisenberg uncertainty principle to conclude
that if the angle is known precisely, then the generator eigenvalue – i.e. Zilch
– is totally unknown.

3 Meaning of the vacuum

All of us have been thoroughly indoctrinated in the idea that zero is a number
on par with other numbers. This is a concept of mathematics. But it’s worth
remembering that zero was an abstraction added relatively recently to the
whole idea of counting.

When we speak of the universe, the concept of ‘nothing’ is an abstraction
not required by any experience we’ve had. Let’s consider quantum mechanics.
We have a collection of states that make up the Hilbert space and we have
a metric. The physical states are regarded as the normalizable vectors in
the Hilbert space. In particular, these are all non-zero vectors in the
Hilbert space. Any vector other than 0 can be multiplied by a scalar so
that the result has a unit norm.

2The terms Zilch and Ziggs are inventions of Susskind and probably won’t be found
anywhere else in the literature – although I haven’t checked.

3The actual story of electromagnetic-charge quantization is much more subtle than the
story of angular-momentum quantization, but it is true that one of the ingredients of that
story, is the symmetry of a compact group.
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In other words, in Quantum Mechanics, 0 is NOT a physical state. And
as a consequence, there is no physical state that represents a universe that
contains nothing. Within any quantum theory, there is a state that has a
preferred status. This is the state which is an eigenvector of the Hamiltonian
(energy operator) whose energy-eigenvalue is the lowest among all energy
eigenvalues.

There’s no mathematical reason why a theory should have only one
lowest-energy eigenstate. But, for a long’ish period of time, it was regarded
as an axiom of physics, that the lowest-eigenvalue energy eigenstate is unique.
When that is true, then symmetries of motion – i.e., operators that commute
with the Hamiltonian – preserve that unique state (i.e. it doesn’t change).
And that’s a very useful starting point for many interesting effects.

We call that unique eigenstate ‘the vacuum’. IT DOES NOT REP-
RESENT ‘0’ ! Unfortunately, in an abuse of notation, the vacuum is often
described, in bra-ket notation, as |0〉, which tends to mislead everyone into
thinking it means ‘nothing’. So, one of the things Susskind does early on,
is to posit the existence of a vacuum state between charged capacitors and
which consists of an electric field pointing in some direction. That’s not
a problem! Like I said, an apparently empty universe is represented by a
normalizable state, and that state is far from trivial. Different observables
(represented by operators) have different expectation values in that vacuum
state.

In modern times, there is one more (critical) generalization of this story.
It is not longer regarded as axiomatic, that the vacuum be unique. We can
study theories where there are many (even infinite) states of lowest energy.
The Higgs phenomenon is a particular manifestation of this kind of thing.

It helps even more than before, to realize there’s nothing ‘empty’ about
a world whose vacuum state is degenerate.

4 Mass and chirality

Susskind interprets the massive Dirac equation as describing a time evolu-
tion in which the particle’s chirality flips back and forth at a rate which is
proportional to its mass. Or said differently, the mass is really a ‘frequency
of chiral-flipping’. I have to admit that this interpretation of the Dirac equa-
tion isn’t one I’ve heard stated before. But it’s not hard to see that it’s a
reasonable way of interpreting the Dirac equation.

To see this, we need to recall some notes called Introducing the Dirac
equation. Here are some of the key equations from those notes. First recall
that we had two 2-spinors that we called ψL and ψR and when expanded out,

5



they obey Lorentz-invariant differential equations which, when restricted to
the z-axis become(

(i∂0 − i∂3)ψ1
L(x)− (i∂1 + ∂2)ψ

2
L(x)

(i∂0 + i∂3)ψ
2
L(x)− (i∂1 − ∂2)ψ1

L(x)

)
=

(
0
0

)
. (1)

(
(i∂0 + i∂3)ψ

1
R(x) + (i∂1 + ∂2)ψ

2
R(x)

(i∂0 − i∂3)ψ2
R(x) + (i∂1 − ∂2)ψ1

R(x)

)
=

(
0
0

)
. (2)

These are two separate equations for ψL and ψR. We say that the complete
set of differential equations is separable. Up to now, ψR,L have represented
fields and we haven’t talked about particles. There’s a relationship, and
for the remainder of this discussion, I’ll sometimes refer to fields as describ-
ing particles. Crudely speaking, the fields are operators which, when they
operate on the vacuum state (see the last section), result in particle states.

There is a nice condensed form of these equations which is known as the
Dirac equation:(

i(I2∂0 + σ ·∇) 0
0 i(I2∂0 − σ ·∇)

)(
ψR(x)
ψL(x)

)
= 0. (3)

Each block of the matrix is 2 x 2 and each entry in the vector is a 2-spinor.
The separability of the equations arises because the matrix is block-diagonal.

There are two related ways in which this equation looks different than the
usual Dirac equation. First, there is no mass term. Second, the usual Dirac
equation is expressed using 4x4 matrices known as the gamma matrices. It
turns out that when there is no mass term, the usual Dirac equation becomes
the above equation.

Although I don’t want to talk yet about the complete solution to these
equations, I do want to give a hint. It turns out that the solutions can be
expressed as Fourier transforms of the form

∫
d3p (χ+(p)eip·x + χ−(p)e−ip·x)

where p = (ω0(p), p1, p2, p3) and ω0(p) =
√

(p1)2 + (p2)2 + (p3)2. In other
words, the energy-momentum of the solutions, have the same relationship
of energy to momentum (a.k.a. the dispersion relation) as particles without
mass, and therefore travelling at the speed of light. We’ll return to that
shortly.

Now it’s time to talk about our spinor notation. We use the subscripts ‘L’
and ‘R’ to describe a quantity called chirality. For those following the group-
theoretic mathematics of the Dirac equation, the two chiralities represent the
Lorentz-group representations

(
1
2
, 0
)

and
(
0, 1

2

)
. What’s important for now, is

to notice that we end up with separate equations for the two 2-spinors, so they
don’t have anything to do with one another. Furthermore, if we change the
frame of reference (rotation, boost), solutions of the ψL equation continue to
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be solutions of the ψL equation and similarly with ψR. It turns out that this is
the defining characteristic of the term ‘particle’. Think about it. A particle is
described by a number of features but notably its linear 4-momentum and its
angular-momentum (spin). When we change frame, those quantities change
in a way governed by Poincaré transformations (Lorentz transformations plus
translations). So it’s natural to say that a particle is a collection of states all
related by Poincaré transformations. Ultimately, this ends up as a statement
that particles correspond to irreducible representations of the Poincaré group.
Strangely, the very first example where we violate that definition, is the
electron. But we’ll get to that in a bit.

We have one more thing to talk about in order to connect with Susskind.
Namely, why are the labels ‘L’ and ‘R’ used to denote the chirality? This
has to do with the fact that the particles described so far, have no mass and
travel at the speed of light (as explained earlier). The particles also have
spin, which can be pictured as angular momentum around the direction of
motion (for example, if the motion is in the z-direction, point your thumb
in the z-direction and then your fingers will curl in the direction of spin
– one way if your thumb points in the direction of +z and the other way
if it points in the direction of −z). We describe the spin as right or left,
depending on the direction of rotation around the axis. Since the particle
travels at light-speed, no change of reference frame will change the direction
of spin. Moreover, that direction is determined by which representation of
the Lorentz group i.e. chirality, has been used.

Another way to say all this, is that the particle chirality doesn’t change
with reference frame, and therefore the particle’s chirality is part of the
particle’s definition. ψL and ψR are two different particles and they have
two different directions of spin around the axis of motion.

What happens when we introduce mass? We need Lorentz invariant equa-
tions, so that limits the form of the massive Dirac equation. It generalizes
the previous form as(

i(I2∂0 + σ ·∇) −mI2
−mI2 i(I2∂0 − σ ·∇)

)(
ψR(x)
ψL(x)

)
= 0. (4)

and then, multiplying out, we get(
i(I2∂0 + σ ·∇)ψR(x)−mψL(x)
i(I2∂0 − σ ·∇)ψL(x)−mψR(x)

)
=

(
0
0

)
. (5)

We see that the mass term mixes the left and right chirality spinors, so a
few things are different from the massless case:

� As time evolves, the particle-chirality can change. It is not a constant
of motion.
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� It is still true that a change of reference frame transforms ψL to ψL
(i.e., chirality is Lorentz-invariant) and similarly with ψR, so techni-
cally speaking those should represent distinct particles. However, for
a variety of reasons, physicists combine the two 2-spinors into a single
4-spinor, and regard these as one, rather than two, particles. If you
prefer to stick to the mathematical definition of particle (as an irre-
ducible representation), then extend the Poincaré group by adding the
reflection operator (called parity). If we insist on irreducible represen-
tations that include the reflection operator, then we need to combine
the two spinors into a single representation – in just the way that’s
done in the 4-spinor Dirac equation.

� If you solve the massive Dirac equation, you again end up with a Fourier
transform, but instead of the 0-mass dispersion expressed by the above
equation for ω0, we end up with a dispersion relation where the en-
ergy ωm is ωm(p) =

√
m2 + (p1)2 + (p2)2 + (p3)2. That expresses the

motion of a particle of mass m.

We’re finally ready to tackle Susskind’s interpretation of the Dirac equa-
tion. Take eq. (6) and rewrite it as

i
∂

∂t

(
ψR(x)
ψL(x)

)
=

(
−iσ ·∇ 0

0 iσ ·∇

)(
ψR(x)
ψL(x)

)
+

(
0 mI2
mI2 0

)(
ψR(x)
ψL(x)

)
.

(6)
The second term on the right is the mass term. Suppose we solve this

equation for the case when ψ is spacially independent. This situation repre-
sents a particle at rest (0 momentum). Then our equation is

i
∂

∂t

(
ψR(x)
ψL(x)

)
=

(
0 mI2
mI2 0

)(
ψR(x)
ψL(x)

)
, (7)

and has the easily verified solution(
ψR(x)
ψL(x)

)
=

(
αeimt + βe−imt

−αeimt + βe−imt

)
, (8)

where α and β are arbitrary space-independent 2-spinors.
But this is exactly what Susskind mentioned. The mass term causes an

oscillation of chiralities whose frequency is proportional to the mass.
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5 Condensates and the Higgs phenomenon

5.1 Overview of two pictures of the Higgs phenomenon

The way I learned about the Higgs phenomenon was mathematically straight-
forward and did not involve the concept of condensates. But in reading some
of the literature about the history of that phenomenon, it appears the early
authors were inspired by condensed matter physics, where broken symme-
tries have a pedigreed tradition. Moreover, there’s some evidence that the
early work on the Higgs phenomenon was expressed in terms of condensates.

I’ve made an attempt to connect the condensate picture of symmetry
breaking, with the mathematics more familiar to me, and have found the
literature unsatisfactory. Some authors definitely attempt to connect the
two pictures, but those authors generally assume that the reader has a better
understanding of condensed-matter physics than I do.

Overall, Lancaster probably has one of the best (certainly the best I’ve
ever seen) textbook treatment of this subject. People like Susskind and others
who invoke the condensate approach, have a fairly sophisticated knowledge of
condensed-matter behavior including phonons, bogolons, superfluidity, phase
transitions etc., and can use this knowledge to give them intuition about
spontaneous symmetry breaking in quantum field theory.

I think it’s worth a stab at making the connections between the condensed-
matter approach and the standard textbook QFT approach. It’s probably
too difficult for me to do this without resorting to some math, and there’s no
point in doing this math without reviewing the theory in the way with which
I’m most familiar. So what follows will start with the usual QFT-textbook
treatment of vacuum symmetry breaking.

5.2 Ambiguity of perturbation theory

First, I think it helps to think about the big picture of what we’re trying
to do. Recall how we actually do QFT. We start with an expression of the
full theory – for example, the path-integral expression. The object of most
interest is the Lagrangian. For connecting to the Susskind talk, I’ll consider
a complex-scalar theory with a field that I’ll call a Higgs field (as distinct
from a Higgs particle which we’ll come to later) whose Lagrangian is

L = (∂µφ
∗) (∂µφ) +m2φφ∗ − λφ2φ∗2. (9)

Although most treatments of the subject would, instead, consider a pair of
scalar fields φ1 and φ2, for our purposes I think it suffices to rewrite the
theory in terms of φ = |φ|eiθ = φr + iφi where φr and φi are the ‘real’ and
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‘imaginary’ components of φ. By the way, although you may not immediately
realize this, the sign of the mass term above is opposite from what we usually
show.

Since we don’t know how to solve the theory exactly, we devise a pertur-
bative approach based on the separation of the Lagrangian into a solvable
(aka free) piece and the remainder. A key question is whether the resulting
series behaves well enough (convergent or asymptotic etc.) to approximate
the solution under certain circumstances. The series may, for some set of
parameters or circumstances, stop giving even qualitatively the correct (if
we could solve the theory completely) behaviors. In most cases, the series is
useful as a certain parameter is changed but only up to a point. We know
this kind of thing from the theory of metamorphic functions, where we often
have a radius of convergence beyond which we encounter either a singularity
or a branch cut. I believe (and here I’m punting because I’m not positive
this is the right way to think about things) that this kind of thing manifests
itself in physics via a critical point and/or a phase transition.

What do we do when we encounter a region where the series is no longer
a good approximation? Again, I’m punting. But I think there are (at least)
two things we can do. (a) We can start all over again by splitting the orig-
inal Lagrangian into a different solvable piece with a different remainder,
and then using a series of approximations to approach the solution – but
in this case, with the parameters that were hitherto un-manageable in the
original perturbation approach... or (b) We can attempt to re-organize the
original perturbation series, perhaps by collecting terms in a mathematically
justifiable way. These two approaches are really just variants of one another.

In the ‘usual’ textbook approach to QFT vacuum symmetry breaking, we
modify the starting solvable Lagrangian as I’ll show shortly. That leads to
a perturbation expansion which approximates the full solution for situations
encountered in our labs. I’ve always implicitly assumed that this new decom-
position describes a different ‘phase’ (in the sense that liquid and solid are
different phases) than the initial perturbative approach based on separating
out all the quadratic terms of the original fields (see later for an explanation
of what I mean). In particular, I didn’t think one could start with the theory
of an unbroken symmetry and derive from that, any kind of understanding of
the theory of broken symmetry. Now, based on Susskind’s lecture, I can see
that there may be an appropriate mathematical method (akin to a reorgani-
zation of terms in the original perturbation series) that lets us organize things
in such a way that we can see how an unbroken theory becomes broken – and
this method is based on similar methods that were used in condensed matter
physics for understanding new phases of matter such as superconductors.
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5.3 A scalar theory with bad perturbative decomposi-
tions; the origin of tachyons

Write the Lagrangian as the sum of a free piece and the rest (which we call
the interactive piece):

L = L0 + LI (10)

where
L0 = (∂µφ

∗) (∂µφ) +m2φφ∗

and
LI = −λφ2φ∗2

. Our perturbation expansion will be based on solving the free theory and
then obtaining Green functions in the way we learned from the path integral
formulation. The free theory now has propagators with a negative mass-
squared! These can be seen to correspond to particles with the property
that E2−p ·p < 0. Recall that in relativistic physics, particle momenta have
the property that p = Ev/c. From the inequality, this means that v ·v > c2.
In other words, these particles travel faster than the speed of light!
We call them TACHYONS.

But don’t get concerned. We encountered these tachyons as a result of
our expansion where we chose the starting point to be L0 which, as we saw
right away, had the wrong sign of the mass. Since tachyons violate causal-
ity, they cannot qualitatively describe the solution for the full Lagrangian.
However, by drawing the potential function, we find that the potential is not
unbounded from below and so the theory looks well-behaved. Our conclusion
is that the perturbation series is ill-behaved and we need to re-organize our
approximations.

5.4 The good decomposition – the usual QFT textbook
treatment of symmetry breaking

But first I’ll turn to the decomposition used for theories of symmetry break-
ing. I don’t know how to draw pictures in Latex and I’m too lazy right now to
insert pdf files created with powerpoint. So I’ll ask you to draw the function
V (x) = −m2x2 + λx4 where m2 > 0 and λ > 0. This function rises steeply
as x gets very positive or very negative. There is also a local maximum at
x = 0 and the function descends into a trough on both the positive and
negative sides of the x-axis. We call this the Mexican hat potential. The idea
for the perturbation expansion, is to pick a point in the trough and expand
around it. Notice that although I have written the potential as a function of
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x, this is highly misleading. You are supposed to think of x as representing
φ(x0, x1, x2, x3). Pick one of the minima of V (x), for example x = C = m√

2λ

(you can find this minimum by taking the derivative and setting it to zero).
Let’s revert back to the notation with fields, and expand around φ(x) = C.
One way to do this is to define a new field φ′(x) by φ(x) = φ′(x) +C. Then,
if we expand the Lagrangian in terms of φ′(x) we get

L = (∂µφ
′)
∗

(∂µφ′)− m2

2

(
φ′ + φ

′∗
)2
−
√

2λφ′φ
′∗
(
φ′ + φ

′∗
)
− λφ′2φ

′∗2 +
m4

4λ

We can again separate the entire quadratic part of the Lagrangian as the
starting point for the perturbative expansion. This time, the mass term is
positive and the rest of the potential – except for the overall constant which
plays no physical role – is positive, and the perturbation expansion is a good
approximation. However, one of the symmetries of the original Lagrangian
is now hidden. This new Lagrangian involves the real part of the field φ′

whereas the original Lagrangian only involved the magnitude of φ. Things
get even more interesting when coupling the φ field to other fields such as
electrons. Terms like ψ̄φψ get expanded to become, for example ψ̄φ′ψ+Cψ̄ψ.
The second term is a mass term. So even if the original fermion Lagrangian
had no mass term, the scalar coupling leads after shifting, to a mass term
for the fermion. Hence the origin of masses.

5.5 Naive perturbation theory, particles, charges, con-
densates, Ziggs and Higgs

Another Lagrangian decomposition we can use starts with a free massless
scalar theory.

L0 = (∂µφ
∗) (∂µφ)

and
LI = m2φφ∗ − λφ2φ∗2.

Now the free theory we start with has massless particles. Those are much
better-behaved than tachyons, so they offer some hope of a better set of
approximations. In the usual way, the free field φ̂(x) can be expanded as

φ̂(x) =

∫
d3p

(2π)3
√

2|p|
(
a(p)e−ipx + b†(p)eipx

)
. (11)

When the operator a† is applied to the vacuum, it gives a one-particle state.
We say that a† creates ‘particles’. Traditionally, we say that b† creates ‘an-
tiparticles’. However, for our purposes we should just think of them as two
different kinds of 0-mass particles.
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Some of what follows will parallel a treatment of Lancaster’s, primarily
found in chapter 42. However, Lancaster is dealing here with condensed
matter physics,so I’ll try to re-cast things in terms of quantum fields.

Define the coherent state |α, θ〉 by

|α, θ〉 = Ne
∫ d3p

(2π)3
α(p)(a†(p) cos θ(p)+ib†(p) sin θ(p))|Ω〉

where N is a normalization factor such that 〈α|α〉 = 14and α(p) is real and
positive. I’m going to refer to this state as a condensate, although I don’t
know whether this is an accurate term, nor am I sure it’s what Susskind
had in mind. But for some particular value of the function α(p), I think
it might be the condensate. The key feature of this state, is that it is an
eigenstate of the annihilation operator: a(p)|α, θ〉 = α(p) cos θ(p)|α, θ〉. Sim-
ilarly, 〈α, θ|b†(p) = iα(p) sin θ(p)〈α, sin θ|. One interesting interpretation of
all this, is that because the annihilation operator doesn’t change this coher-
ent state, it is effectively removing a particle from the state without making
a difference. That’s a point that Susskind makes about the condensate.

Now we’re ready to evaluate 〈α, θ|φ̂(x)|α, θ〉. From the previously given
expansion of φ̂(x) and the eigenstate equations for the annihilation and cre-
ation operators, we get

〈α, θ|φ̂(x)|α, θ〉 =

∫
d3p

(2π)3
√

2|p|
α(p)

(
cos θ(p)e−ipx + i sin θ(p)eipx

)
.

We call the RHS of this equation φ(x) (without the hat).
Return to our Lagrangian. The energy operator is

Ê =:

∫
d3x

(
∂0φ̂

∗∂0φ̂+∇φ̂∗ · ∇φ̂−m2φ̂∗φ̂+ λφ̂∗2φ̂2
)

: (12)

The colon symbols which bracket the RHS, denote normal-ordering. That’s
something I haven’t really discussed previously and which requires some care-
ful thinking. Briefly, when promoting fields to operators, there is an ambi-
guity of how operator products should be ordered in the Lagrangian. If the
ordering is changed, then commutation relations will imply some new terms.
This is dealt with, in modern QFT, by normal-ordering. This concept is
defined by decomposing the fields into their constituent annihilation and
creation operators, then multiplying out the fields into sums of products of
annihilation and creation operators, and then finally re-ordering operators
within each product so that the annihilation operators appear on the left.

4I don’t actually know whether this state is normalizable, but if it isn’t, I’m sure we
can fiddle around and come up with something acceptable.
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When we take the expectation value of the energy operator in a coherent
state, we obtain

〈α, θ|Ê|α, θ〉 =

∫
d3x

(
∂0φ

∗∂0φ+∇φ∗ · ∇φ−m2φ∗φ+ λφ∗2φ2
)
. (13)

Alternatively, we could look at the energy-density operator and when we
compute its expectation value in the state |α, θ〉, we’d obtain the integrand
of the above expression.

We see that with this procedure, field operators get converted into field
values by acting on the appropriate coherent states. The theory of coher-
ent states was developed by Glauber for electromagnetism, and provides a
straightforward connection between the classical electromagnetic fields, and
expectation values of field operators. Furthermore, these coherent states can
be pictured as many-body systems and that allows us to apply some intu-
itions that come from many-body physics, particularly as they cool down to
condensates.

Because we are now dealing with complex-valued functions (rather than
operator-valued functions), we can make sense of terms such as ‘vibrations
of the field’. For each |α, θ〉 (recall that φ(x) = 〈α, θ|φ̂(x)|α, θ〉), φ(x) can
be regarded as a sum of coefficients times wave-phases for each 3-momentum
(and, noteworthy, the phases obey 0-mass momentum-dispersion relations).

Unfortunately, that picture leads to statements like ‘particles are field
vibrations’. Maybe that’s a valid statement, but to my taste it’s a bit of a
stretch. The field is an operator. When it acts on the naive vacuum (by
which I mean the state which is the lowest-energy state of the free theory)
it creates a superposition of particle states each multiplied by an oscillating
phase. In my opinion, that’s not the same thing at all as saying that the
particle is, in some fashion, a perturbation of the field.

Be that as it may, let’s return to the coherent-state picture. We know
from our experience with the construction of particle states out of free fields,
and also from our experience in condensed-matter physics, that the most
important state is the lowest-energy state – and that from there, physics is
developed from the small perturbations to that state. So let’s find that state.

The lowest-energy (normalized) state |0〉, or vacuum, will have the prop-
erty that

〈0|Ê|0〉
is the minimum among all states. However, we’ll see that this minimum
can be achieved by more than one state, so we will eventually change our
notation for the vacuum in this theory.

Assume (I think this may be true but don’t know for sure) that the
coherent states |α, θ〉 are ‘complete’. That is, all states of the Hilbert space
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can be generated by them. Then it will suffice to minimize 〈α, θ|Ê|α, θ〉 over
all coherent states |α, θ〉. Namely, find the minimum of

〈α, θ|Ê|α, θ〉 =

∫
d3x

(
∂0φ

∗∂0φ+∇φ∗ · ∇φ−m2φ∗φ+ λφ∗2φ2
)

(14)

Here, φ(x) is simply a complex-valued function. Since the derivative terms
are positive, it’s easy to see that the minimum will be achieved when φ(x)
is a constant. In this situation, the integral will be infinite. Obviously, that
situation will need to be treated with care and once again, I don’t know what
happens when rigor is applied. I’ll adopt the usual tactic of saying that we
only integrate over a finite large volume V . Since the functions are constant,
we then get

〈α|Ê|α〉 = V
(
−m2φ∗φ+ λφ∗2φ2

)
.

Rewrite this as
〈α|Ê|α〉 = V

(
−m2|φ|2 + λ|φ|4

)
.

It’s easy to minimize this function of (the constant) |φ|. Take the deriva-
tive d

d|φ| and set the result to 0. Noting that |φ| ≥ 0, we obtain 2 solutions,
only one of which is a minimum. Namely,

|φmin| =
m√
2λ
.

You should recognize this value as the constant C from last section.
This quantity is sometimes known as the vacuum expectation value, or

VEV, and plays an important role in the weak and electromagnetic interac-
tions. It has been measured to have a value of 246 GeV.

Importantly, we see that the vacuum is degenerate. Let

φ(x) =
m√
2λ
eiθ.

Then, for any constant phase θ and constant real value α, the corresponding
state |α, θ〉 (recall that φ(x) is related to α and θ via a Fourier transform) is
a vacuum. If we recall the Mexican hat potential, think of the height of the
hat as |φ| and the angle around the hat as θ. The distance from the center
of the hat to the trough is the VEV.

Let’s recap. We decomposed the Lagrangian into a piece which describes a
massless scalar particle, and a piece which describes the interaction term (and
includes the mass term). The interaction term, if expressed with complex-
valued fields, looks like a Mexican hat. We then create coherent states out
of the massless scalar particle states, and search for coherent states that
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minimize the system energy. These states can be expressed as functions
of space-time which are Fourier transforms over definite-momentum states.
The minimum-energy coherent states – also called condensates – have the
property that they are constant in space and time. The condensates differ
from one another by a phase θ. Any one of them can be regarded as a vacuum
state. One other observation is worth making. For φ to be a constant, the
only term present in the Fourier expansion is the 0-momentum term. So
going back to the original definition of the coherent state, we see that

|α, θ〉min = Neα(a
†(0) cos θ+ib†(0) sin θ)|Ω〉. (15)

In the original coherent-state definition, the above would require that α(p) =
αδ(p). (As always, we’d need to eventually make sense of this by using some
mathematical legerdemain.) The vacuum state would then be interpreted as
a weighted sum over states consisting of n scalar particles with 0 momentum.
The weighting factor is proportional to the VEV. We will need to pick a
vacuum, so from now on, pick θ = 0, in which case |0〉 ≡ |α, 0〉min =
Neαa

†(0)|Ω〉. The free 0-momentum particle which ‘condenses’ in that vacuum
state is a†|Ω〉 which Susskind calls the Ziggs particle.

A popular analogue in condensed matter physics is obtained by consider-
ing a substance of magnetic spins which, at high temperature, are lined up
randomly. The theory is spherically symmetric and therefore no direction is
preferred to any other. However, as the substance is cooled, the spins tend
to line up with one another. In that particular example, some minor external
perturbation is undoubtedly responsible for the initial impulses that pick one
direction over another. But the cooler the substance becomes, the more the
spins line up with one another until at 0 temperature, they are lined up in
one direction (in 2D, we call it the phase angle θ). If we started all over again
from a hot substance, the cooled substance would look the same, except the
spins would line up along a different phase angle.

Let’s turn back to Susskind. In the condensed matter spin example of
the previous paragraph, we saw that a high temperature, the average spin
was 0 by spherical symmetry. But when cooled, the average spin acquires
a non-zero value. All spins line up in some direction. This clearly breaks
the spherical symmetry so we describe this by saying ‘the symmetry is
broken by the vacuum’.

5.6 Fermions and Z particles in the condensate

Now that we have some kind of condensate description of the vacuum, Susskind
talks about the behavior of an electron, for example, in that condensate.
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Recall that Susskind says left-handed electrons carry a certain Zilch and
right-handed electrons carry a different Zilch. Susskind then tells us that
there is an interaction term in which a right-handed electron can emit a (0-
momentum) Ziggs particle and become a left-handed electron. In the pres-
ence of the vacuum condensate, the emission of a Ziggs just creates a Ziggs
in the condensate, and as previously discussed, this Ziggs gets absorbed into
the condensate without changing the condensate. Similarly, a Ziggs can be
absorbed by a left-handed electron, to become a right-handed electron. The
situation is very much like the one that Susskind discusses at the very be-
ginning of his lecture, of a dipole traveling through an electric field (and as
pointed out earlier, an electric field is a coherent photon state), which can be
thought of as a dipole interacting with photons that are freely (i.e., without
impact) absorbed and emitted from/to the field.

So now, we have an electron traveling through the condensate, and chang-
ing from left to right and back again, at a rate determined by the strength
of the interaction. This oscillation between left and right was earlier – in the
discussion of the Dirac equation – shown to give mass to the electron.

What remains of the Higgs field particles? When we consider coherent
states of non-zero momentum, there are oscillations of terms involving α(p)
and θ(p). When we evaluate the energy operator of the fully interacting
theory, we’ll see that there are energy terms coming from motion in the radial
direction (magnitude of α(p)) and terms coming from motion in the angular
direction θ(p). It turns out that the angular terms appear to have 0 mass and
the radial terms have a mass proportional to m in the original Lagrangian.
Those latter terms are then interpreted as particles in the presence of the
condensate, and those particles are called Higgs particles. What about the
0-mass modes? These modes are called Goldstone particles, but they don’t
appear in our world. Why not?

There’s a subtle trick (I’m not convinced Susskind does this justice). It
turns out that there are Z-bosons in the theory, with which the Higgs field
can interact. Through a change of field variables, we can come up with
a Lagrangian that describes a Z’-boson, and only the Higgs modes which
have non-zero mass. This re-jiggering of the fields sometimes goes by the
expression ‘the Z mesons swallow the Goldstone bosons’. But the interaction
between Z’s and Higgs’ also gives rise to the sort of thing which gave mass to
the fermions. Ziggs particles can be absorbed and emitted by the Z’s, and like
with the fermions, these essentially disappear into or out of the condensate.
The net effect, which can be combined with the Goldstone sword-swallowing
act, is to give the Z’ bosons a mass.

Having said all this, I’m not positive that this condensate-based picture
is entirely correct. I’m much more comfortable dealing directly with the
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Lagrangian and shifts of variables, and as you can see from the last few
paragraphs, I tend to revert to that way of thinking about things even in
the context of condensates. But I believe I’ve more or less bridged the two
pictures of spontaneous symmetry breaking.
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