What Monsters Might Be Lurking There?

Testing the anomalous magnetic moment of the muon

Bill Celmaster, April 2021

es

YU

acc

From Time Magazine Apr 26 – May 3 2021

Outline

- Classical theory of charged particle in a magnetic field
- Magnetic moment
- g=2: Spin magnetic moment according to the Dirac equation
- Measuring the magnetic moment of an electron
- What is a muon?
- Fermilab
- Measuring the magnetic moment of a muon
- How are corrections to g=2 (anomalous magnetic moment) predicted?
	- Feynman diagrams, Nobel prizes and the electron a.m.m.
	- What's different about the a.m.m. of the muon strong interactions?
- Dispersion and lattice predictions compared to Fermilab results
	- Discovery, tension and marketing

Classical theory of charged particle in EM field

- $F = e(E +$ 1 \mathcal{C}_{0}^{0} $v \times B$
- This follows from Euler-Lagrange equations for $\mathcal{L} =$ $m\dot{\bm{q}}^{\bm{2}}$ 2 $+ e$ (\dot{q} ∙ A \mathcal{C}_{0}^{0} $-\varphi$)
	- The dynamic variables are the particle coordinate and velocity q and \dot{q} . The EM fields are 'external' and not influenced by the particle.

• leads to Hamiltonian
$$
H = \frac{1}{2m} (p - \frac{e}{c}A)^2 + e\varphi
$$

• When **B** is constant, you can write $A =$ 1 2 $\boldsymbol{r} \times \boldsymbol{B}$ and then

$$
H = \frac{p^2}{2m} - \frac{e}{2mc} \mathbf{L} \cdot \mathbf{B} + \dots
$$

$$
(\mathbf{L} = \mathbf{r} \times \mathbf{p})
$$

Magnetic moment

- The term $\frac{e}{2x}$ $2mc$ L in this equation is called *the magnetic moment, m, of* the charged particle.
- This is typically associated with a magnetic dipole, which when acted on by a magnetic field, experiences a torque $m \times B$.
- The relationship of **m** to \boldsymbol{e} $2mc$ \boldsymbol{L} comes from considering a small loop of current, I. This current causes a magnetic field, and the associated magnetic (dipole) moment is |**m |=** IA where A is the area enclosed by the loop.

Dirac equation

$$
H = \frac{p^2}{2m} - \frac{e}{2mc} \mathbf{L} \cdot \mathbf{B} - \frac{ge}{2mc} \mathbf{S} \cdot \mathbf{B} + \dots
$$

($\mathbf{S} = 2\hbar \mathbf{\sigma}$, is the spin)

- Before Dirac, the spin term had been hypothesized to explain atomic energy levels – the so-called anomalous Zeeman effect.
- **g** was a parameter origin unknown called *the Lande g-factor* and measured to be ≈2.
- The Bohr magneton is defined as $\mu_B =$ $e\hbar$ $2mc$
- Dirac's derivation showed $g = 2$.
- Higher order corrections due to dynamics of electromagnetic field: called anomalous magnetic moment: $a =$ $g-2$ 2 .

What is a muon?

- μ is just like an electron but 207 times heavier.
- Like the electron, it is associated with its own (almost massless) neutrino ν.
- \bullet $\left(\begin{matrix} e^- \\ v \end{matrix} \right)$ ν $\mu^$ $ν_μ$. Each entry has lepton number $+1$.
- \bullet $\left(e^{+}\right)$ $\bar{\nu}_e$ μ^+ $\bar{\nu}_{\mu}$. These are the antiparticles. Lepton number -1.
- In reactions, lepton number is conserved (in all experiments so far).
- Also, energy is conserved. Particle energy is $E = \sqrt{(mc^2)^2+p^2}$. (p is momentum)

How does a muon differ from an electron?

• The electron is stable. A muon isn't. Why not?

If particle 1 is an electron, then $L1 = 1$. Try $L2 = 1$, $L3 = 1$, $L4 = -1$. Particle 2 is electron or muon. If muon, then $E2 > E1$. If electron, then all other masses must be 0 and all momenta must be 0. So electron can't decay!

If particle 1 is a muon, then it can decay into an electron, a neutrino and an antineutrino. Or two electrons and a positron etc. A muon decays so doesn't hang around in nature! It has to be produced in reactions. Much harder to measure anything.

Muon Beam Injection

24 segmented PbF² crystal calorimeters

- Each crystal array of 6×9 PbF₂ crystals - 2.5 x 2.5 cm² x 14 cm (15X₀)
- Readout by SiPMs to 800 MHz WFDs (1296 channels in total)

This slide and some others are taken from a Joe Price presentation

Muon Beam Injection

Measurement Principle

- Inject polarized muon beam into magnetic storage ring
- Measure **difference** between spin precession and cyclotron frequencies

Different frequencies imply different energies measured in calorimeters.

 $\omega_a\ \mu_p\ m_\mu\ g_e$

 n_p μ_e m_e

3 ppb 22 ppb 0.3 ppt

Rev. Mod. Phys. **88**, 035009 (2016)

BNL

• If $g = 2$, $\omega_a = 0$

 a_{μ}

```
q \neq 2, \omega_a \approx (e/m_u)a_uB_u
```


Fermilab results announced April 7, 2021

The new experimental world-average results announced by the Muon g-2 collaboration today are: g-factor: 2.00233184122(82) anomalous magnetic moment: 0.00116592061(41)

Feynman Diagrams I

External lines represent real particles. Time goes from left to right. Each line has a momentum. Momenta at vertices are conserved (e.g. p1=p2+p3+p4)

Conventions: If the direction of the arrow is left to right, it is a particle, otherwise antiparticle.

• Vertices represent interaction terms: above there is an interaction term that looks like L1 x L2 x L3 x L4.

Feynman Diagrams II

- Internal lines represent 'virtual particles': Shorthand for propagators or Green functions of the form $\frac{1}{p^2-m^2}$.
- The perturbation series is in "e" (see the interaction vertex below).

e, p1 γ , p 2 γ , p 3 e, p4 $p1 + p2$ Internal electron Represents an electron absorbing a photon and then emitting a photon. This is what happens when electron interacts with an external EM field. The calculation involves $\frac{e^2}{(n^4+n^2)}$ $\frac{e^2}{(p_1+p_2)^2-m^2}$. There are 2 vertices so a factor of e^2 . Interaction $\overline{\psi}$ ψ

This interaction vertex can be expanded to represent higher order corrections

• Loops represent integrals over momentum space.

Magnetic Moment & Virtual Loops

• For a pure Dirac spin-1/₂ charged fermion, g is exactly 2

- Interactions between the fermion and virtual loops change the value of g
- X & Y particles could be standard model or new physics:

Schwinger Correction

• The most simple correction is 1st order QED, calculated by Schwinger in 1948:

$$
g = 2(1 + \frac{\alpha}{2\pi}) \approx 2.00232
$$

- Resolved the discrepancy in g_e as measured by Kusch-Foley in 1947
- This correction would be the same for the muon.

Standard Model Components of muon g-2 (from 2019)

a^μ Theoretical Status

HVP (LO): Lowest-Order Hadronic Vacuum Polarization

- **Critical input** from e⁺e⁻ colliders (data from SND, CMD3, BaBar, KLOE, Belle, BESIII), δa_{μ} HVP ~ 0.5%; extensive physics program in place to reduce δa_{μ} HVP to $\sim 0.3\%$ in coming years
- **Progress on the lattice**: Calculations at physical π mass; goal: δa^μ HVP ~ 1—2% in a few years (cross-check with e+e- data)

$$
a_{\mu}^{\text{had;LO}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \int_{m_{\pi}^{2}}^{\infty} \frac{ds}{s^{2}} K(s) R(s)
$$

$$
R \equiv \frac{\sigma_{\text{tot}}(e^{+}e^{-} \rightarrow \text{hadrons})}{\sigma(e^{+}e^{-} \rightarrow \mu^{+}\mu^{-})}
$$

$$
e^{+} \downarrow_{\text{max}}^{\text{max}} \qquad e^{+} \downarrow_{\text{max}}^{\text{max}} \qquad e^{+} \downarrow_{\text{max}}^{\text{max}} \qquad h
$$

Anomalous magnetic moment Comparisons between theory and experiment

Fermilab (experiment) 2021: 0.00116592061(41) Muon g-2 Theory Initiative (dispersion) 2020: 0.00116591810(43) Borsanyi et al. (BMW) (lattice) 2021: 0.00116591956(56) Gottlieb et al. (ETM) (lattice) 2020: 0.00116591869(150)

Error bars above are 1 σ (difference between quantities has 1σ = sqrt(err1^2+err2^2))

- Fermilab-dispersion: 4.2σ cumulative probability 0.00003 • Fermilab-BMW: 1.5σ cumulative probability 0.13 • Fermilab-ETM: 1.8σ cumulative probability 0.07 • BMW-dispersion: 2.1σ cumulative probability 0.04
- A difference of 5σ is considered to be a **DISCOVERY**. This is the reason for the Fermilab headline.
- Technically, since the experiment differs from the dispersion theory result by less than 5σ we call it **TENSION**.
- The BMS result is a brand-new lattice result, and BMS claims theory agrees with experiment.
- The theory community is a bit skeptical of the BMS error bars.
- More work is needed. Clearly, Fermilab wants the tax-payers to be excited!

Appendix

Stern-Gerlach experiment The earliest detection of quantization of orbital angular momentum

$$
U = -\mu \cdot B = -\mu_B \frac{g}{2} B_z = \pm \mu_B B_z
$$

