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1 Classical theory of a charged particle in an

EM field

1.1 Classical equation of motion

� The fields of electrodynamics are the 4-tuplet of the vector potential
Aµ(x). We will refer to A0 as the scalar potential φ.

� The familiar fields of electromagnetism are

E = −∇φ− 1

c
∂0A

B = ∇×A
(1)

where the nabla operator ∇ is defined by ∇j = ∂
∂qj

. (When we work

in the non-relativistic limit, we don’t distinguish between upper and
lower indices.)

� For particles in the non-relativistic limit, we have

d

dt
(mv) = e

(
E +

1

c
v×B

)
(2)

1.2 The classical Hamiltonian

In this section, the takeaway is

H ==
1

2m

(
p− e

c
A
)2

+ eφ
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� Recall that the connection between classical and quantum mechan-
ics, is made via the Lagrangian and Hamiltonian. We first show that
eq.(2) can be derived from the Euler-Lagrange equations for the La-

grangian L = mq̇2

2
+ e

(
q̇·A
c
− φ
)
. We treat the electromagnetic field

as non-dynamic. That is, we regard it as external and unaffected by
the charged particle so that the EM fields don’t appear in the Euler-
Lagrange equations.

– Let the classical action S =
∫
dtL. The E-L equations are equiv-

alent to the variational equation δS
δqi

= 0.

d

dt

∂L

∂q̇i
=
∂L

∂qi
(3)

Notice the total derivative on the LHS. We will expand that as

d

dt

∂L

∂q̇i
=

(
∂

∂t
+
∂qj
∂t

∂

∂qj
+
∂q̇j
∂t

∂

∂q̇j

)
∂L

∂q̇i
.

Then plugging the Lagrangian into the Euler-Lagrange equations,

and noting that ∂L
∂qi

= e
(
− ∂φ
∂qi

+ 1
c
(q̇ · ∇)Ai

)
and pi ≡ ∂L

∂q̇i
= mq̇i+

e
c
Ai (we’ve introduced the definition of the canonical momentum
pi) we get1

e

(
− ∂φ
∂qi

+
1

c
(q̇ · ∇)Ai

)
=

(
∂

∂t
+
∂qj
∂t

∂

∂qj

)(
mq̇i +

e

c
Ai

)
=

d

dt
(mq̇i) +

e

c

(
∂Ai
∂t

+ q̇j
∂Ai
∂qj

)
=

d

dt
(mq̇i) +

e

c

∂Ai
∂t

+
e

c
(−(q̇× (∇×A))i + (q̇ · ∇)Ai)

(4)
After an easy simplification we then end up with

d

dt
mv = e

(
E +

1

c
v×B

)
.

This confirms our choice of Lagrangian.

1The Lagrangian has no explicit time dependence, so the ∂
∂t term makes no contribu-

tion.
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� The Hamiltonian H is defined as q̇ ·p−L, where all instances of q̇ are
replaced by 1

m

(
p− e

c
A
)
. Then

H =
1

m

(
p− e

c
A
)
· p− 1

2m

(
p− e

c
A
)2
− e

c

(
p− e

mc
A
)
·A + eφ

=
1

2m

(
p− e

c
A
)2

+ eφ

(5)

1.3 The magnetic moment

For a uniform (i.e., constant) magnetic field, the field Ai can be written (the
form is known as the ‘symmetric gauge’) as

A =
1

2
r×B.

Then

1

2m

(
p− e

c
A
)2

=
p2

2m
− e

2mc
L ·B +

e2

8mc2
(
r2B2 − (r ·B)2

)
2 Non-relativistic quantum theory of a charged

particle in an EM field

In this section, I follow the prescription that we find in the earliest expositions
of quantum mechanics.

� In the classical theory, identify the Hamiltonian, and write it in terms
of the coordinate and momentum variables. We did this in the last
section. To repeat:

H =
1

2m

(
p− e

c
A
)2

+ eφ (6)

� Let ξ(t,x) be the electron wave-function and interpret H and P as
operators, then write

Hξ(t,x) =

(
1

2m

(
p− e

c
A
)2

+ eφ

)
ξ(t,x). (7)

� Finally make the identifications

H → i
∂

∂t
, pj → −i

∂

∂xj
(8)

so the Schrodinger equation becomes

i
∂ξ(t,x)

∂t
=

(
1

2m

(
−i∇− e

c
A
)2

+ eφ

)
ξ(t,x). (9)
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3 Dirac particles review

� The Dirac action for a free spin-1
2

particle:

S =

∫
d4xL =

∫
d4xψ†(x)γ0

(
i/∂ −m

)
ψ(x) (10)

– ψ is a 4-spinor – a vector with 4 complex components.

– γ0, γ1, γ2, γ3 are 4x4 matrices.

– /∂ ≡
∑

µ γ
µ∂µ

� Equation of motion:
δS
δψ†

= 0

implies the Dirac equation(
i/∂ −m

)
ψ(x) = 0.

� General solution of Dirac equation:

ψ(x) =
2∑
s=1

∫
d3p

(2π)3
1√
2ωmp

(
aspu

s
pe
−ipx + bs∗p v

s
pe

ipx
)
, (11)

– ωmp = p0 =
√
m2 + p2.

– s is called the spin and ranges from 1 to 2.

– usp and vsp are complex 4-vectors chosen with appropriate orthonor-
mality conditions

us†p u
s′

p = 2ωmp δss′ = vs†p v
s′

p

vs†-pu
s′

p = us†−pv
s′

p = 0∑
s

uspiu
s∗
pj =

(
/pγ

0 +mγ0
)
ij∑

s

vspiv
s∗
pj =

(
/pγ

0 −mγ0
)
ij

(12)

In these expressions, /p = γ0ωmp + γipi.

– asp and bsp are coefficients.
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� Express asp and bsp in terms of ψ by employing inverse Fourier transform:

as†p =
1√
2ωmp

∫
d3xψ†(t,x)uspe

−ipx

bs†p =
1√
2ωmp

∫
d3xvs†p ψ(t,x)e−ipx

(13)

In the free theory, these operators are time-independent.

� Promote ψ, asp and bsp to operators on a Hilbert space TBD. The canon-
ical commutation relations for the fields in the Lagrangian are:

{ψα(x),
∂L
∂ψ̇β

(y)} = {ψα(x), iψ†β(y)}

= iδ(x− y)δαβ

{ψα(x), iψβ(y)} = 0

{ψ†α(x), iψ†β(y)} = 0

(14)

and these imply from eq. (13)

{asp, a
†s′
p′ } = (2π)3δ3(p− p′)δss

′

{bsp, b
†s′
p′ } = (2π)3δ3(p− p′)δss

′

{asp, as
′

p′} = {a†sp , a
†s′
p′ } = {bsp, bs

′

p′} = {b†sp , b
†s′
p′ } = 0

(15)

� We can now generate the Hilbert space, as a Fock space constructed
from one-particle states |s, p〉 = as†p |Ω〉 and one-antiparticle states |s, p〉′ =
bs†p |Ω〉, where |Ω〉 denotes the vacuum state. We call as†p and bs†p creation
operators.

4 Quantum Mechanics review

� Start with the Heisenberg picture since QFT is in the Heisenberg pic-
ture. Operators evolve in time as

O(t) = eiHtO(0)e−iHt. (16)

States don’t evolve in time, in the Heisenberg picture. We describe
states using bra-ket notation. e.g. |ξ〉 or (the dual) 〈ξ|. Don’t get
confused by the notation ξ. We’ll end up talking about this
as a wavefunction and not a field.
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� We’ll also end up using the Schrodinger picture. In that picture, opera-
tors don’t evolve, but states do. The Schrodinger state |ξ(t)〉 is defined
as

|ξ(t)〉 = e−iHt|ξ〉. (17)

We see from this, that the Heisenberg-picture state |ξ〉 is related to the
Schrodinger-picture state by

|ξ〉 = |ξ(0)〉.

� If we take derivatives in the Schrodinger picture, we get

i
d

dt
|ξ(t)〉 = H|ξ(t)〉.

You should recognize this as the so-called time-dependent Schrodinger
equation. 2

� A more familiar form of the Schrodinger equation is the wavefunction
form. We take the inner product of both sides by applying the ket 〈x|
which is an eigenvector of the position operator x̂.

i
d

dt
〈x|ξ(t)〉 = 〈x|H|ξ(t)〉.

We usually write 〈x|ξ(t)〉 ≡ ξ(t, x).

In QFT, the position operator has a diminished role relative to quan-
tum mechanics. Remember, in QFT, time (which is not regarded as
an operator in ordinary quantum mechanics) and position are both
parameters of the fields and have similar roles.

� To connect QM to QFT, let’s focus on the 4-vectors of states |x〉i and
|x〉′i rather than the operator x̂. We do that by defining |x〉i as a
superposition of states |s,p〉 = 1√

2ωp
as†p |Ω〉 and similarly with |x〉′i as

2There is also a time-independent Schrodinger equation

H|ξ〉 = E|ξ〉,

also known as the energy eigenvalue equation. Note that the time-dependent and
time-independent Schrodinger equations have nothing to do with one another!.
The time-independent Schrodinger equation can be useful for solving the time-dependent
Schrodinger equation.
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a superposition of states |s, p〉′ = 1√
2ωp

bs†p |Ω〉. We’ll define these as

Heisenberg states, so will set t = 0.

i〈x| =
∑
s

∫
d3p

(2π)3
eip·x〈s,p|(usp)i = 〈Ω|ψi(0,x)

i〈x|′ =
∑
s

∫
d3p

(2π)3
eip·x〈s,p|′(vs∗p )i = 〈Ω|ψ†i (0,x)

(18)

where |s,p〉 is defined as an eigenstate of the momentum operator p̂
whose eigenvalue3 is p. Similarly with |s,p〉′.

� We can now define spinor particle and antiparticle wavefunctions by

ξi(x) = i〈x|ξ〉 = 〈Ω|ψi(0,x)|ξ〉
ξ̃i(x) = i〈x|′ξ〉 = 〈Ω|ψ†i (0,x)|ξ〉

(19)

� As an example of how to make contact with something familiar from
QM, consider the action of the momentum operator.

i〈x|p̂|ξ〉 =
∑
s

∫
d3p

(2π)3
eip·x〈s,p|p̂|ξ〉(usp)i

=
∑
s

∫
d3p

(2π)3
peip·x〈s,p|ξ〉(usp)i

=
∑
s

∫
d3p

(2π)3
(−i∇) eip·x〈s,p|ξ〉(usp)i

= (−i∇)
∑
s

∫
d3p

(2π)3
eip·x〈s,p|ξ〉(usp)i

= (−i∇) i〈x|p̂|ξ〉 = (−i∇) ξi(x).

(20)

Similarly i〈x|′p̂|ξ〉 = (−i∇) ξ̂i(x).

5 Field equations with an external electro-

magnetic field

The full theory of the universe doesn’t involve any external fields. However,
it’s useful in practice, to isolate “large” sources of electromagnetic fields, from

3Strictly speaking, what I mean is that p is a triplet of eigenvalues.
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the particles that interact with them. In Appendix A, I discuss a systematic
way of deriving from a full dynamic theory, the external-field theory which
approximates the effect of large sources on electrons, etc. In what follows, I
simply assume the result summarized in the following

� The (external) fields of electrodynamics are the 4-tuplet of the vector
potential Aµ(x). Commonly, A0 is written as the scalar potential φ.
The external fields are NOT operators on a Hilbert space. They are
just real functions (sometimes called c-numbers).

� The electric and magnetic fields are

Ei = −∂iA0 + ∂0Ai

Bi = εijk∂jAk
(21)

� The Lagrangian for a Dirac particle in the presence of an external
electromagnetic field is

L = ψ̄ (iγµ∂µ −m)ψ − eψ̄γµAµψ (22)

where Aµ is an external field – by which I mean that it is a real-valued
4-vector whose values are ‘given’, rather than derived.

� Recall from months ago, our exploration of quantum field theory from
the perspective of path integrals. The basic idea was that all physical
quantities of interest could be derived from an integral over variables
(fields) of the exponential of the action – the action being a function of
those variables. One of the things we learned was that if the action was
quadratic in those variables, the integral could be (in principle) com-
puted exactly. What that tells us, is that the above Lagrangian (and its
integral, the action) leads to an exactly solvable quantum field theory.
It will turn out that the solutions can’t be expressed in closed form,
but that they can be expanded in powers of |p|/m – i.e. a relativistic
expansion.

� The variation equation
δS
δψ†

= 0

implies the equation of motion(
i/∂ −m− eγµAµ(x)

)
ψ(x) = 0. (23)
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� For future reference, expand and rewrite this equation as

i∂0ψ(x) = −iγ0γi∂iψ(x) +
(
mγ0 + eγ0γµAµ(x)

)
ψ(x) (24)

where I’ve multiplied both sides by γ0 in order to rewrite terms.

� Promote ψ to the operator ψ̂. Because Aµ is an external field, we don’t
promote that to an operator and treat it instead as a complex-valued
vector.

� Now we proceed by a sequence of steps which bring this into the form
of the time-dependent Schrodinger equation.

– We will be interested in the spinor particle wavefunctions ξi(t,x)
defined as 〈Ω|ψi(0,x)|ξ(t)〉 where the Schrodinger state, defined
in eq. (17) is |ξ(t)〉 = e−iHt|ξ〉. We see from eq. (19) that

ξi(t,x) = 〈Ω|ψi(0,x)e−iHt|ξ〉
= 〈Ω|e−iHteiHtψi(0,x)e−iHt|ξ〉
= 〈Ω|eiHtψi(0,x)e−iHt|ξ〉
= 〈Ω|ψi(t,x)|ξ〉

(25)

where we’ve used the fact that the vacuum is invariant under the
time-translation operation, and we’ve also used the fact that the
field transforms as the Heisenberg operator in eq. (16),

ψi(t,x) = eiHtψi(0,x)e−iHt.

Similarly, we can see that

ξ̃i(t,x) = 〈Ω|ψ†i (t,x)|ξ〉.

Note that in the non-interacting theory 〈Ω|ψi(0,x)|ξ(t)〉 =i 〈x|ξ(t)〉,
as explained in eq. (18).

– Next, we’ll take the time-derivative of the 4-spinor ξ(t,x), and
then invoke eq. (24).

i∂tξ(t,x) = 〈Ω|i∂tψ(t,x)|ξ〉
= 〈Ω| − iγ0γj∂jψ(t,x) +

(
mγ0 + eγ0γµAµ(t,x)

)
ψ(t,x)|ξ〉

= γ0γj (−i∂j) ξ(t,x) +
(
mγ0 + eγ0γµAµ(t,x)

)
ξ(t,x)

(26)
Similarly,

i∂tξ̃(t,x) = −γ0∗γj∗ (i∂j) ξ̃(t,x)−
(
mγ0∗ + eγ0∗γµ∗Aµ(t,x)

)
ξ̃(t,x)

(27)
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– Before leaving the antiparticle equation, we’ll transform it into
a form more similar to the particle equation, following pp. 192
and 193 of Schwartz. Define ξc = −iγ2ξ̃. This is known as the
charge-conjugate of ξ and continues to describe the antiparticle
wavefunction. Define new γ-matrices by γ̂µ = γ2γµ∗γ2. It isn’t
hard to see that these new γ-matrices satisfy the Dirac algebra
and therefore can be used in the Dirac equation. The previous
equation becomes (by inserting γ2γ2 = −I in appropriate places)

i∂tξc(t,x) = γ̂0γ̂j (−i∂j) ξc(t,x) +
(
mγ̂0 − eγ̂0γ̂µAµ(t,x)

)
ξc(t,x)

(28)
This looks just like the particle equation except that e is replaced
by −e. In other words, it describes the motion of a particle whose
mass is the same as the original particle but whose charge is op-
posite.

– To proceed, I will follow the outline of Problem 10.1 in Schwartz’s
text applied to the particle equation. It will be useful to write the

spinor ξ as

(
ξL

ξR

)
where ξL and ξR are each 2-spinors. Similarly,

we will write ξ̃ as
(
ξ̃L ξ̃R

)
.

* Rewrite eq. (26), suppress the (t,x) arguments and expand
the matrices.

(i∂t − eA0) ξ = γ0γj (−i∂j) ξ +
(
mγ0 + eγ0γjAj

)
ξ

=

(
− (−i∂j + eAj)σj mI2x2

mI2x2 (−i∂j + eAj)σj

)
ξ

(29)

* We can then re-apply the operator on the left hand side to
obtain

(i∂t − eA0)
2 ξ =

(
α 0
0 α

)
ξ (30)

where

α = (−i∂j + eAj) (−i∂k + eAk)σjσk +m2I2x2.

We simplify α by noting a couple of things about the terms
with σjσk. First, there is the Pauli matrix identity σjσk =
iεjklσl+δjk. Second, note that for an arbitrary function f , we
have −i∂j(Akf)−iAj(∂kf) = −i (∂jAk) f−i (Ak∂j + Aj∂k) f .
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Apply these observations to α.4

α =
(
−∂j∂j + e2AjAj − 2iAj∂j − i (∂jAj) +m2

)
I2x2 + eεjkl∂jAkσl

=
(
(−i∇− eA)2 +m2

)
I2x2 − eB · σ

(31)
where B is the magnetic field. All of this can be written
in slightly more conventional notation by recognizing, in the
Schrodinger equation, that the operator i∂t is the Hamiltonian
H, and the operator −i∇ is the momentum p (see for example
eqs. (20)). Then our Schrodinger equation can be written as

(H − eA0)
2 ξ =

(
α 0
0 α

)
ξ (32)

where

α =
(
(p− eA)2 +m2

)
I2x2 − eB · σ

=
(
(cp− eA)2 +m2c4

)
I2x2 − e~cB · σ

(33)

In the last line, we re-introduced units that had been sup-
pressed.

* Now we’ll take the square-root of the operators on both sides
and expand to leading order in c.5 We set up the solution
and expansion by first examining eq. (26). From this, we can
see that the LHS operator is just (H − eA0) I4x4 and the RHS

operator is

(
0
√
α√

α 0

)
. We define the square-root of α by

4In trying to reconcile signs, I’ve come across a rather bothersome set of conventions.
Hopefully I’ve understood them. In classical pre-relativistic EM, there was no notion of
covariant and contravariant tensors, so if V is a non-relativistic 3-vector, then Vi = V i.
However, if V is a 4-vector, then Vi = −V i. Where we get into trouble, is when we
use the same letter for both the 3-vector and the 4-vector. Here’s an example. Consider
the 3-vector x. This is meant to denote the triplet (x, y, z). What about the 4-vector x?
xi = −xi. Which one is y (for example)? Is it x2 or is it x2? We need to pick a convention,
in this case x2. In other words, our convention is that xi = xi = xi, where we use the
boldface to denote the 3-vector. For momentum, we use the opposite convention, pi = pi.
Other conventions required here are ∇i = ∂i = ∂

∂i , Ai = Ai = −Ai (see Cambridge EM
notes of Tong) and B = ∇i ×A.

5WARNING: These are 4x4 matrices, some of whose components are operators (like
the gradient), so the square-root has many branches. At the very least, each of the diagonal
entries can be plus or minus. More significantly, the square-root of a diagonal matrix can
be non-diagonal. However, the original equation was linear, so the ambiguities are actually
fictitious. We’ll choose the square-root by solving the linear equation to leading order in
c and then expand around that solution. This will give a unique square-root.
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again examining eq. (26) and noting that the leading term in
c is mc2I2x2.

√
α = mc2

√(
I2x2 +

1

m2c4
(cp− eA)2 I2x2 −

e~
m2c3

B · σ
)

= mc2I2x2 +
1

2m

(
p− e

c
A
)2

I2x2 −
e~

2mc
B · σ +O(

1

c2
)

(34)
We could leave things explicitly in terms of the Pauli matri-
ces σ, but often we prefer to express equations using the spin
S = 2~σ. To remind you, the spin is defined to be the angular
momentum – in units of ~ – for a spin-1/2 particle, or in our
group-theoretic language, the spin is the operator that gen-
erates the 2D representation of rotations. Putting everything
together, our Schrodinger-style equation looks like

(H − eA0) ξ
L =

(
mc2I2x2 +

1

2m

(
p− e

c
A
)2

I2x2 −
e

mc
B · S + ...

)
ξR

(H − eA0) ξ
R =

(
mc2I2x2 +

1

2m

(
p− e

c
A
)2

I2x2 −
e

mc
B · S + ...

)
ξL.

(35)

We can simplify further by defining ξ+ = ξL+ξR√
2

. Then

(H − eA0) ξ
+ =

(
mc2I2x2 +

1

2m

(
p− e

c
A
)2

I2x2 −
e

mc
B · S + ...

)
ξ+.

(36)
Other than the overall constant mc2, this equation is the
Schrodinger-Pauli equation. Compare this to the non-relativistic
Schrodinger equation, eq. (7) which looks similar except for
the explicit spin term.

* The antiparticle equation looks the same except that the charge
is reversed.

– As mentioned before, a further simplification can be made when
the magnetic field is uniform (i.e. constant). In that case, the
field Ai can be written as

A =
1

2
r×B.

We use this in our Schrodinger-Pauli equation by expanding
(
p− e

c
A
)2

=
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(
−i~∇− e

c
A
)2

.(
−i~∇− e

c
A
)2

= −~2∇2 +
e2

4c2
(
r2B2 − (r ·B)2

)
)− i~e

c
r×B · ∇

= p2 − e

c
(r× p) ·B +

e2

4c2
(
r2B2 − (r ·B)2

)
)

= p2 − e

c
L ·B + 2mD

(37)
where D = e2

4c2

(
r2B2 − (r ·B)2

)
) is known as the diamagnetic

term, and is a very small effect.

Now we are ready to rewrite our Schrodinger-Pauli equation.

(H − eA0) ξ
+ =

(
mc2 +

1

2m

(
p2 − e

c
B · [L + 2S]

)
+D + ...

)
ξ+.

(38)

An alternative derivation, based on the Dirac representation of
gamma matrices and spinors, is provided in an Appendix.

� In a purely classical theory, the spin term is absent. The energy has
a term proportional to the electron’s angular momentum dotted into
the magnetic field. This causes electrons, along certain trajectories, to
be deflected in a magnetic field. The coefficient e

2mc
of B · L is known

as the classical magnetic moment. In the quantum theory, there is
an additional energy term – and hence deflection term – proportional
to B · S. The coefficient twice the classical magnetic moment. We
say that the electron quantum magnetic moment equals gee

2mc
,

where ge is called the electron Landé g-factor. According to the
Dirac equation, we find that ge = 2. It’s common in the literature, to
simply refer to g, but in a specific context. So, for example, in recent
experiments, we hear that measurements are being made of g − 2 for
the muon. The muon, like the electron, is governed by the Dirac equa-
tion, so we might expect g − 2 = 0. However, remember that we made
a number of approximations. The most significant of these, was that
we completely ignored the interplay between electrons and photons. In
fact, photons played no role whatsoever in the Dirac equation, since
we assumed the electric field was external – or in particular, that its
dynamics were not affected in any way by the electrons (we were es-
sentially ignoring Newton’s third law). Once we take these interactions
into account, there are corrections to g and it is no longer exacty 2.
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A Field equations with quantum electrody-

namics

In this appendix, I discuss the validity of treating the electromagnetic field as
an external function in the Lagrangian. This subject does not get discussed
in most texts or online lecture notes. In fact, I’ve only found one treatment
and it’s rather involved. For those interested, you can find this in Steven
Weinberg “The Quantum Theory of Fields Volume I” section 13.6 (pages
556-562). This section depends critically on several prior specialized sections
on Feynman diagrams etc. Here is a sketch of the key points

� The electric and magnetic fields can be expressed directly in terms of
the tensor

Fµν = ∂µAν − ∂νAµ (39)

� The Lagrangian for Dirac and electromagnetic fields was derived over
the space of many years, based on a requirement of Lorentz invariance
together with a connection to Planck’s theory of quantum electromag-
netism. For the problem of interest to us here, we assume a theory
with two kinds of charged particles. The first charged particle is a light
spin-1/2 fermion such as the electron. The second charged particle is a
heavy fermion such as a proton (but the method will generalize even to
charged scalars). Ultimately, we will treat the heavy particles as being
the source(s) of the external electromagnetic field.

L = −1

4
FµνF

µν + ψ̄ (iγµ∂µ −m)ψ − eψ̄γµAµψ

+ Ψ̄ (iγµ∂µ −m) Ψ− qΨ̄γµAµΨ
(40)

where the field Ψ represents the heavy particle.

� The variation equation
δS
δψ†

= 0

implies the equation of motion(
i/∂ −m− eγµAµ(x)

)
ψ(x) = 0. (41)

This looks a bit like the Dirac equation. However, there are separate
equations of motion for Aµ and Ψ in terms of the other fields. The
resulting coupled set of equations can’t be solved analytically.
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� Our goal is to show that we can approximate all calculations involving
the light fermion by assuming a Lagrangian of the form eq. (22).

� Start the analysis by considering the scattering of an electron off a
heavy fermion. This can be treated in perturbation theory by adding
up Feynman diagrams depicted on page 561 of Weinberg – namely,
diagrams which include a heavy fermion with some number of photon
lines emitted from it. A photon line represents a propagator with a 4-
momentum that is the difference of the 4-momenta of the heavy fermion
lines at the photon-fermion-antifermion vertex.

� Those propagators can be shown to be dominated by intermediate mo-
menta that approach 0 (at which point the propagator acquires a pole).
When the diagrams are added up, including only contributions of the
pole-residues, the result is the same as if one had a Lagrangian with
an external coulomb field.

� An arbitrary external field then represents a functional smearing of the
initial state of the heavy fermion.

� The approximation obtains corrections of order k2/p2 where k is the
typical electron energy and p is the typical heavy-particle energy. These
corrections are smaller as the heavy-particle mass is larger. Of course,
in practical situations, the heavy particles actually represent something
like a magnet, which consists of large numbers of bound charges. But
the Feynman-diagram argument shows how the formalism permits a
separation into dynamical particles and external fields.

B Dirac representation version of the equa-

tions

� Again we assume Aµ is time-independent. For this section, I will work
in the Dirac representation.

γ0 =

(
I2 0
0 −I2

)
, γi =

(
0 −σi
σi 0

)
(42)

It will be useful to write the spinor ξ as

(
ξ+

ξ−

)
where ξ+ and ξ− are each

2-spinors. Similarly, we will write ξ̃ as
(
ξ̃+ ξ̃−

)
. It turns out that the

relationship between the Weyl (chiral) representation that we’ve used
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in the main text, and this Dirac representation, implies that ξ+ = ξL+ξR√
2

which is consistent with our definition of ξ+ in the main text.

– Rewrite eq. (26), suppress the (t,x) arguments and expand the
matrices.

(i∂t − eA0) ξ = γ0γj (−i∂j) ξ +
(
mγ0 + eγ0γjAj

)
ξ

=

(
mI2x2 (−i∂j + eAj)σj

(−i∂j + eAj)σj −mI2x2

)
ξ

(43)

– Following identifications made in the main text, we obtain

(H − eA0) ξ
+ = mc2ξ+ + cσ ·

(
p− e

c
A
)
ξ− (44)

(H − eA0) ξ
− = −mc2ξ− + cσ ·

(
p− e

c
A
)
ξ+. (45)

– The next steps follow the Wikipedia article “Electron magnetic
moment” and seem to me to lean heavily on physical intuition
rather than rigorous logic. We start by assuming the equations
can be solved for eigenvectors of H, so we take Hξ = Eξ. The
assumption seems reasonable, since the momentum and Hamilto-
nian ought to commute. Furthermore, we also assume that for

slow particles, we have E − eA0 = mc2
(

1 +O
(
v
c

)2)
.6 (I believe

it would be possible to solve these equations starting with the
assumption that E − eA0 ≈ −mc2 but that’s not an intuitively
reasonable solution.)

– From eq. (44), our approximation implies that ξ− is of order
O
(
v
c

)
ξ+. So one conclusion already, is that the bottom part of

the 4-spinor is suppressed relative to the top part of the 4-spinor.
Then, from eq. (45) we obtain

2mc2ξ− = cσ ·
(
p− e

c
A
)
ξ+ +O

(v
c

)2
mc2 (46)

from which we conclude

ξ− =
1

2mc
σ ·
(
p− e

c
A
)
ξ+ + ... (47)

6It’s also possible to start with the ansatz that E = mc2
(

1 +O
(
v
c

)2)
and after ex-

pansion in orders of v
c and e, we’d come to the same conclusion.
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We can then substitute back into eq. (44), and perform expansions
as we did in the main text.

(E − eA0 −mc2)ξ+ =
1

2m

(
σ ·
(
p− e

c
A
))2

ξ+ + ...

=
1

2m

(
p2 − e

c
B · [L + 2S] +D + ...

)
ξ+

(48)
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