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This accompanies the QM youtube lecture 4.3 by Burton Zwiebach, https:
//www.youtube.com/watch?v=tl7q_VZ3eIQ, which is also covered in online
notes https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018/
lecture-notes/MIT8_06S18ch2.pdf.

1 Motivating the spin magnetic moment term

in the Schrodinger equation

� Zwiebach defines the magnetic moment of a current loop as

µ = IA

where I’ve set c = 1 and I is the current in the loop. Also, the area
vector A has magnitude A which is the area enclosed by the loop and
has direction normal to the plane of the loop.

� Zwiebach then goes on to say that in the presence of a magnetic field
B the energy of that current-loop is

H = −µ ·B.

This is something that can be derived from the Lorentz force of classical
electromagnetism.

� The definition of the magnetic moment can be rewritten in terms of
the classical angular momentum.
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– The current in a circular loop is just the charge per unit time
through a point in the loop.

I = q
v

loop-circumference

= q
v

2πr

= q
mv

2mπr

(1)

We recognize mv as the magnitude p of the electron’s momentum.
Then we note that A = πr2 to get the magnitude

µ = q
p

2mπr
πr2

= q
rp

2m

=
qL

2m

(2)

where we recognize the classical angular momentum as L = rp,
in the case that the radius vector is perpendicular to the velocity
vector, as happens in the loop.

– This derivation leads us to

µ =
q

2m
L.

2 Introducing Pauli spinors

Zwiebach, in lecture 4.3, evidently builds on some earlier lectures where he
has introduced the idea that an electron is represented by a 2-component
vector called a Pauli spinor.

I frankly don’t know what was the concept or motivation behind his intro-
duction of Pauli spinors so rather than guess, I’ll make my own introduction.
Previously, we encountered representations of the rotation group. Here’s a
reminder.

2.1 Representations and Pauli spinors

� A finite linear representation – up to a phase – of the rotation group
is a set, M(R) of matrix functions of rotations R so that M(R1R2) =
M(R1)M(R2)e

iθ.
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� In order to construct quantum theories with rotational symmetry, we
deal with multiplet states that transform under rotations by the action
of a matrix represention (up to a phase) of the rotation group.

� When the states form a doublet, they transform under 2D matrix rep-
resentations (up to a phase) of the rotation group. The doublets are
called (Pauli) spinors. Reminder:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
(3)

2.2 Lie Algebra of the Rotation Group

Consider a rotation around the x-axis Rx(θx). Expand it as a Taylor expan-
sion for small values of θx.1 0 0

0 cos θx sin θx
0 − sin θx cos θx

 =

1 0 0
0 1 0
0 0 1

+ iθx

0 0 0
0 0 −i
0 i 0

+ ... (4)

Define I ≡

1 0 0
0 1 0
0 0 1

 and Jx ≡

0 0 0
0 0 −i
0 i 0

.

We call Jx the angular momentum around the x-axis. It is the quantum
operator corresponding to classical angular momentum.

We can rewrite Equation (4) as Rx(θx) = I + iθxJx + .... It turns out
that if we continue the Taylor expansion, we find

Rx(θx) = I + iθxJx +
(iθ2x)

2
Jx

2 + ... = exp(iθxJx) (5)

Note that
Ry(θy)Rx(θx) 6= Rx(θx)Ry(θy)

The operations don’t commute.
It follows that for the infinitesimal generators

JyJx 6= JxJy

and in general we can show by direct computation, that

[Ji,Jj] = iεijkJk (6)

where we’ve equated the indices (1, 2, 3) with (x, y, z) and we’ve defined the
commutator [Ji,Jj] ≡ JiJj − JjJi. The generators Ji together with the
commutation relations of equation (6) are known as the LIE ALGEBRA
of the rotation group.
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2.3 Spin

� Just like we had matrix representations (up to a phase) of the rota-
tions, we also have matrix representations of their generators – i.e., the
angular momenta Ji as illustrated in eq. (5).

� For spinor representations, the angular momenta Ji are represented by
the 2 x 2 Pauli spin matrices σi/2.

� Since these matrices represent the angular momentum operators, they
must satisfy the same Lie Algebra commutation relations – namely,

[
σi
2
,
σj
2

] = iεijk
σk
2

(7)

We can verify this by explicitly computing matrix products with the
Pauli spin matrices.

� EXERCISE. Show, by explicit computation with the Pauli spin ma-
trices, that we also have the anticommutation relations

σiσj + σjσi = 2δij.

HINT: Verify the relation for only two cases – the case when i = 1
and j = 2, then the case when i = 1 and j = 1. If you get the right
answers, declare victory.

� We say that σ
2

is the spin of the electron, representing the angular
momentum operator for the electron doublet and we sometimes denote
is as S.

3 Magnetic moment and spin

� Now that we’ve identified the spin S as an angular momentum, we can
try picturing it as something characterizing something like the internal
angular momentum of the electron (hence the name spin).

� This is, at best, a rather crude picture. In fact, since the spin is a
matrix (or more precisely a triplet of matrices) and the classical angular
momentum is just a real vector, the two concepts are only related
abstractly. When we eventually deal with quantum mechanics, then
we treat both S and L as operators (albeit on different spaces) and it
becomes more natural to compare the two.
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� In the meantime, we can put together various things we’ve discussed.
We had

H = −µ ·B

and for a current-loop we had

µ =
q

2m
L

so altogether we have

H = − q

2m
L ·B.

� Although the electron itself can’t be regarded as a current loop, it
seems reasonable to think that we could replace the loop angular mo-
mentum L with the intrinsic electron angular momentum S leading to
a contribution – independent of current – of

H = − q

2m
S ·B?

� The way Zwiebach portrays this, we need to multiply by a fudge factor
g to reflect the crudeness of the spin picture. I don’t think this is the
way things happened. But for now, that suffices for motivation.

4 Simple one-component Schrodinger equa-

tion

� The Schrodinger equation is

i∂tψ(t,x) = Hψ(t,x)

where ψ is the Schrodinger wavefunction (NOT an operator or field)
and H is the Hamiltonian.

� Also, the energies of quantum states are given by the equation

HψE = EψE

where ψE is an eigenfunction and E is its energy eigenvalue.

� The Hamiltonian for a free particle is given clasically by

H =
p · p
2m
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and in QM, we use the correspondence principle to set

p = −i∇.

Recall that ∇i = ∂
∂xi

.

� Substituting the correspondence principle into the Hamiltonian, we get

H = −∇2

2m
.

5 Extending the Schrodinger equation to in-

clude Pauli spinors

� Again, what follows should be regarded as motivation. I’m not sure it’s
historically correct but even if it is, there’s a lot of context missing.

� Since we are going to extend the Schrodinger equation to deal with
doublets, let’s find an alternative expression for the Schrodinger Hamil-
tonian for a free theory. We had H = −∇2

2m
. Now we want to act on a

2D space of functions, so we simply generalize the Hamiltonian to

H = −I2x2
∇2

2m
.

We could obtain this by writing H = p2

2m
and substituting p = −i∇.

But let’s see what happens if instead we write

p̂ = −iσ ·∇ = −i
∑
j

σj∂j.

THIS IS PURELY A GUESS FOR MOTIVATIONAL PURPOSES!!!

� EXERCISE: Show that

(−iσ ·∇) (−iσ ·∇) = −I2x2∇ ·∇.

Hint: Use the following identity which you can derive from the Pauli
spin matrix commutation and anticommutation relations above (or by
brute force).

σiσj = δijI2x2 + iεijkσj. (8)
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� From the exercise, we see that we could write

H =
p̂2

2m

so that demonstrates there are at least two definitions of the free mo-
mentum which lead to the same Hamiltonian.

� Now we’re ready to extend Schrodinger’s equation. You may remember
from a previous set of notes, that in classical theory, the Hamiltonian
for a charged particle in an EM field is

H =
(p− eA)2

2m
+ eφ.

So just as we generalized p to p̂ = −iσ ·∇, let’s generalize (p − eA)
to Π = σ · (−i∇− eA) so that

H =
(σ · (p− eA)) (σ · (p− eA))

2m
+ eφI2x2

� EXERCISE: From the σ multiplication identity eq. (8) above,
show Zweibach’s result

(σ · a)(σ · b) = (a · b)I2x2 + iσ · (a× b). (9)

Hint: Expand (σ ·a) as σiai and (σ · b) as σjbj and then apply eq.(8).

� SOMETHING MYSTERIOUS FROM QM: Before we can
properly expand the above Hamiltonian, we have to recognize the mys-
terious fact from QM, that piAj 6= Ajpi. This is explained in what
follows. In regular math, aibj = bjai. This not generally true in QM
because the variables of interest are operators rather than numbers.
For example, suppose ai is the operator xi and bj is the operator pj.
(Respectively the i component of the position vector and the j com-
ponent of the momentum vector. )(By the way, the combination xipj

should remind you of a component of the angular momentum.) In
QM, we have the commutation relationship xipj = pjxi + iδij so that
ajbj 6= bjaj.

The notation tends to obscure the distinction between ‘operator’ and
‘eigenvalue’. For example, suppose we have a wavefunction ψ(x). We
use the language of operators and states by saying

– ψ is a state – that is, a map from real 3-tuplets ((x1, x2, x3)) to
the complex number ψ(x).
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– xj is an operator which transforms the state ψ to the state which
maps the 3-tuplet x to xjψ(x). (Often we write x̂j to denote the
operator, but I’m not going to do that right now.)

In that language of operators and states, the electromagnetic field
Ai(x) is an operator and not a state. Specifically, it is the opera-
tor which transforms the state ψ to the state which maps the 3-tuplet
x to Ai(x)ψ(x).

What about the operator pj? When applied to the state ψ, we obtain
a new state which maps x to −i∂jψ(x).

We can then apply this formalism to the joint operator pjAk(x) as
applied to the state ψ(x). First one applies the operator Ak(x) to the
state ψ. This is a new state. Then apply the operator pj to that new
state. The result is different than if we first apply pj to ψ and then
afterwards apply the operator Ak to that state.

−i∂j[Ak(x)ψ(x)] = (−i∂jAk(x))ψ(x) + Ak(x) (−i∂jψ(x))

compared to
Ak(x) (−i∂jψ(x)) .

The extra term is (−i∂jAk(x))ψ(x). Abstractly, we would write

[pj, Ak(x)] = −i∂jA(x).

If A(x) = x, we see that the commutator is −i which should be a
familiar commutation relation.

� EXERCISE: Use the above mysterious result to show that

εijk (pj − eAj) (pk − eAk) = −2ieεijk∂jAk.

� If we use Zwiebach’s identity eq. (9) and the last exercise above, we
see that one of the terms in the Hamiltonian will be

−ieσiεijk∂jAk
2m

= i
e

2m
σ ·B

as Zwiebach shows.
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