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This accompanies the QM youtube lecture 4.4 by Burton Zwiebach, https:
//www.youtube.com/watch?v=tl7q_VZ3eIQ, which is also covered in online
notes https://ocw.mit.edu/courses/physics/8-06-quantum-physics-iii-spring-2018/
lecture-notes/MIT8_06S18ch2.pdf.

1 Where are we coming from and where are

we heading?

� Previously on this program ...

Following Zwiebach, we found the Schrodinger equation for an electron
in a classical electromagnetic field. We found a term in the Hamiltonian
proportional to the L · µ, the dot product of angular momentum and
magnetic moment. Then – following Pauli – we hacked the Schrodinger
equation to add spin and we got an extra term proportional to S · µ.

� Next we will modify the Schrodinger equation to make it consistent
with relativity.

– Zweibach follows the historical approach. He starts with a Schrodinger
wavefunction equation, and looks for a Lorentz-invariant, first-
order differential equation. This requires vectors. That’s the Dirac
equation for wavefunctions χ(t,x).

– I’ll do it the modern way and build off all our work in quantum
field theory. We had a Dirac Lagrangian. The Euler-Lagrange
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equation is also called the Dirac equation (it looks similar to the
above) but it operates on an operator ψ(t,x).

– We know how to solve DE’s for complex functions like χ but not
for operators. So the first thing I do is to convert the operator
equation into a wavefunction equation. The trick is to use an inner
product.

� The Dirac wavefunction equation is hard to solve in closed form. Usu-
ally it is expanded in powers of v/c. We will see that the Schrodinger
Hamiltonian is modified so that H → H + ∆V where ∆V = e2

2|x|3m2 S ·
L + ...

� Since ∆V is small, the term makes a small perturbation on the original
Schrodinger energy levels. Because there are two values of spin, the
energy splits into two close values, known as the fine structure.
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� Going forward ...
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We’ll review why energy levels appear in angular momentum multiplets,
and how to use the angular-momentum algebra and perturbation theory
to compute energy-splitting. Then we’ll begin using similar techniques
to understand the particle zoo. Instead of the angular-momentum al-
gebra, we’ll look at the SU(3) algebra and instead of energy levels we’ll
look at mass levels.

2 From field theory to the Schrodinger equa-

tion

2.1 General quantum field theory in a nutshell

� The program of quantum physics starts with the action, which is the
integral of a Lagrangian S =

∫
L.

� In quantum field theory (QFT), the Lagrangian is dependent on canon-
ical fields φi(x) and canonical field-momenta

πi(x) =
∂L
∂φ̇i

(x)

where the indices are simply used to distinguish field components.

S =

∫
d4xL(φi, πi).

� One of the axioms of field theory is that the action must be Lorentz-
invariant. This axiom imposes constraints on the permissible Lagrangians.

� Another axiom of field theory is that the fields in our universe, obey
the Euler-Lagrange equations – that is, those fields are extrema of the
action.

� Yet another axiom of field theory, is that the fields are actually opera-
tors on a Hilbert space, and that their commutation relations are given
by Dirac’s conditions relating canonical variables (fields) to canonical
momenta.

2.2 A particular case – free Dirac fields

� The Dirac action for a free spin-1
2

particle:

S =

∫
d4xL =

∫
d4xψ†(x)γ0

(
i/∂ −m

)
ψ(x) (1)
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– ψ is a 4-spinor – a vector with 4 complex components.

– γ0, γ1, γ2, γ3 are 4x4 matrices.

– /∂ ≡
∑

µ γ
µ∂µ

� Equation of motion:
δS
δψ†

= 0

implies the Dirac equation(
i/∂ −m

)
ψ(x) = 0

where ψ is a 4-tuplet of operators.1

2.3 A more interesting case – free Dirac fields inter-
acting with an external electromagnetic field

This will be the way we model an electron in the presence of the electro-
magnetic field of a proton. The proton is heavy, so the electron doesn’t have
much effect on the proton’s electromagnetic field. We can treat that EM field
as external.

� The Lagrangian for a Dirac particle in the presence of an external
electromagnetic field is

L = ψ̄ (iγµ∂µ −m)ψ − eψ̄γµAµψ (2)

where Aµ is an external field (the electromagnetic 4-potential)– by
which I mean that it is a real-valued (NOT an operator2 4-vector
whose values are ‘given’, rather than derived.

� The equation of motion for the Dirac operator field in an external
electromagnetic field is(

i/∂ −m− eγµAµ
)
ψ(x) = 0. (3)

1Notice that in the Lagrangian, we were dealing with complex numbers, but when we
write the Euler-Lagrange equation and perform other manipulations, we re-interpret the
fields as operators. This sort of makes sense if you think about path integrals. In the path
integral, there is an exponential of the action, and the action is an integral over complex
functions. All manipulations of interest, including Euler-Lagrange equations, are done
as functional integrals weighted by the exponential of the action – corresponding to the
operator interpretation.

2Although as Zwiebach points out, A is a function of x which in turn is an operator on
the space of functions.
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2.4 From operator equation to wavefunction equation

In previous sessions, we saw that the Dirac field is an operator on a Hilbert
space of particle and antiparticle states. Ultimately, we are interested in the
energies of bound states of an electron state in the presence of a proton’s EM
field. From those energies we can obtain the hydrogen spectrum.

� In the very early days of QM, Schrodinger had come up with a pre-
scription for finding the energy states.

– Find the classical Hamiltonian H as a function of coordinates x
and momenta p.

– Rewrite p as a differential operator −i∇.

– Then apply the rewritten Hamiltonian to a function ψ and solve
the eigenvalue equation

Hψ = Eψ

. Here, the ψ are wavefunctions and not field operators. The
energies E are the bound state energies.

– There is also an identification between the Hamiltonian
and the time derivative operator:

i∂tψ(t,x) = Hψ(t,x).

� At first, no-one knew what the function ψ represented. It took
years for people to eventually interpret it as “state” with a
probability amplitude.

� Dirac didn’t start with a field theory. He started with a Schrodinger-
style equation that was Lorentz invariant. This did a good job of pre-
dicting bound state energies. However, Dirac and others were un-
able to interpret Dirac’s wavefunction the same way that they
had interpreted Schrodinger’s wavefunction. There were seri-
ous problems that required a new concept, holes, which was
an unsatisfactory ad hoc construction to fix the interpreta-
tion issues. THAT EVENTUALLY LED TO THE CONCLU-
SION THAT A PROPER THEORY OF THE ELECTRON
REQUIRED A FIELD THEORY, AND AN INTERPRETA-
TION OF ψ AS A FIELD AND NOT A DIRAC WAVE-
FUNCTION.
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� Rather than directly imitating Zwiebach’s lecture which follows Dirac’s
approach of looking for a relativistic wave function equation, I’ll arrive
at the same endpoint by starting from our field theory results. Later
I’ll return to Zwiebach’s approach.

� Use Dirac’s bra-ket notation to represent states (vectors in a Hilbert
space) – |ξ〉.

� A special state is denoted |Ω〉 and is the lowest-energy eigenstate of the
Hamiltonian. It is generally called the vacuum state.

� Define a complex 4-tuplet called a Dirac wavefunction by

ξi(x) ≡ 〈Ω|ψi(x)|ξ〉.

Here we’ve return very temporarily to ψi as referring to the Dirac field
operator.

� We’ll work with this to get energy eigenvalues, but the Dirac
wavefunction isn’t to be interpreted as a Schrodinger wave-
function. The analysis of 100 years assures us that the eigen-
value procedure is valid.

� Then we can use eq. (3) to get(
i/∂ −m− eγµAµ

)
ξ(x) = 0. (4)

The difference between this equation and the previous Dirac
equation, is that ξ is a set of complex numbers, whereas ψ is
a set of operators!

2.5 From state equation to Schrodinger equation

The above Dirac equation is what we had in previous notes. Now I want to
connect this to Zwiebach lecture 4.4. He uses slightly different notation
– surprise, surprise! I’ll convert mine to his.

� Following convention, Zwiebach calls his complex wavefunction ψ in-
stead of ξ. This is often confusing because we previously had used ψ
as a field operator. From now on, when discussing the Dirac equation,
we’ll use ψ to denote the Dirac wavefunction, rather than the Dirac
field operator!
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� Zwiebach also writes the 4 components of the wavefunction as

ψ =

(
χ
η

)
where χ and η are both 2-spinors (i.e. complex doublets). He usually
refers to χ as the Pauli spinor.

� Now rewrite the Dirac equation, eq. (4) by explicitly isolating the time
derivative (and don’t forget we are replacing ξ by ψ).

i∂tψ(t,x) = γ0γj (−i∂j)ψ(t,x) +
(
mγ0 + eγ0γµAµ(t,x)

)
ψ(t,x)

(5)

� Zwiebach follows conventions of the Dirac wavefunction approach and
uses the Dirac representation of γ matrices.

γ0 =

(
I2 0
0 −I2

)
, γi =

(
0 −σi
σi 0

)
(6)

� Take eq. (5), write ψ =

(
χ
η

)
, and expand the γ matrices in the Dirac

representation, and get

(i∂t − eA0)

(
χ
η

)
=

(
mI2x2 (−i∂j + eAj)σj

(−i∂j + eAj)σj −mI2x2

)(
χ
η

)
(7)

EXERCISE: Derive this equation.

� For the case of the Hydrogen atom, the vector potential Ai is 0 (no
magnetic field) and we write A0 = −φ, so the equation becomes

(i∂t + eφ)

(
χ
η

)
=

(
mI2x2 (−i∂j)σj

(−i∂j)σj −mI2x2

)(
χ
η

)
(8)

� Now for a magic trick! We saw that Schrodinger identified the operator
i∂t with the Hamiltonian, and that the eigenvalue equation is Hψ =
Eψ. So, from now on, whenever we see ı∂tψ, we’ll replace it
by Eψ.

� Let’s make that substitution and rewrite eq. (8) in components as

(E ′ + eφ) I2x2χ = (−i∂j)σjη
(E ′ + 2m+ eφ) I2x2η = (−i∂j)σjχ

(9)

where E ′ = E −m.
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� Now rewrite the second equation as

η =
(−i∂j)σjχ

(E ′ + 2m+ eφ)
(10)

and substitute η into the first equation.

(E ′ + eφ) I2x2χ = (−i∂j)σj
(−i∂j)σjχ

(E ′ + 2m+ eφ)
(11)

� We can re-organize terms a bit so that this equation becomes

E ′χ =

(
−eφ− 1

2m
∇ · σ

(
1 +

E ′ + eφ

2m

)−1
∇ · σ

)
χ

≈
(
−eφ− 1

2m
∇ · σ

(
1− E ′ + eφ

2m

)
∇ · σ

)
χ

(12)

where we’ve used the nonrelativistic approximation that E ′ + eφ <<
2m.

� Recall that
∂i(φχ) = (∂iφ)χ+ φ(∂iχ).

Therefore

∇ · σ (φ∇ · σχ) = (∇φ · σ) (∇χ · σ) + φ∇ · σ∇ · σχ (13)

Recall from the notes to Zwiebach lecture 4.3 that

(σ · a)(σ · b) = (a · b)I2x2 + iσ · (a× b). (14)

Applying this to the above, we get

∇ · σ (φ∇ · σχ) = (∇φ ·∇χ) I2x2 + iσ · (∇φ×∇χ) + φ∇2χ (15)

so that we can rewrite eq. (12) as

(E ′ + eφ)χ ≈ − 1

2m
∇ · σ

(
1− E ′ + eφ

2m

)
∇ · σχ

= i
e

4m2
σ · (∇φ×∇χ)

+

(
− 1

2m

(
1− E + eφ

2m

)
∇2 +

e

4m2
(∇φ ·∇)

)
χ

(16)
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� The non-relativistic expansion is in terms of order 1/m. We have

E ′ + eφ = O(
1

m
).

The term E ′ + eφ also appears on the RHS, multiplied by 1
m2 , so alto-

gether that term is O( 1
m3 ) and can therefore be suppressed relative to

other terms of order 1
m2 .

� The relativistic term of particular interest to us is the spin-orbit term
(the only term involving spin). For the hydrogen atom,

φ(t,x) =
e

|x|

and therefore
∇φ(t,x) = −e

x

|x|3
.

So we can rewrite eq.(16) as

E ′χ =

(
− 1

2m
∇2 − e2

|x|
+

e2

4|x|3m2
σ · (x× (−i∇)) + ...

)
χ (17)

Noting that −i∇ = p, we can replace the term (x× (−i∇)) on the
RHS, with (x× p), which – recognizing the definition of orbital angular
momentum – becomes L.

� Finally we have

E ′χ =

(
− 1

2m
∇2 − e2

|x|
+

e2

4|x|3m2
σ · L + ...

)
χ

=

(
− 1

2m
∇2 − e2

|x|
+

e2

2|x|3m2
S · L + ...

)
χ

(18)

where we used S = σ/2.

� This should be familiar-looking. It is an eigenvalue equation where the
eigenvalue is E ′ = E −m, and the RHS is of the form Hχ with

H =
p2

2m
+ V (x) +

e2

2|x|3m2
S · L + ...

The potential is just −e2/|x|.3

3Zwiebach includes other terms such as the Darwin term proportional to ∇φ ·∇ but
for now, our focus is only on the spin-orbit contribution.
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