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1 Why geometry?

1.1 Quick and dirty

Start by pretending that the earth’s surface is a perfectly smooth sphere.
You and a friend start off at the equator 100 miles apart heading northward
perpendicular to the equator on parallel routes. Each of you walks in a
straight line (”as straight as possible on the surface of a sphere”). Eventually,
you will discover that you are only 50 miles apart (and ultimately you both
end up on top of each other at the north pole). Lesson: “objects moving in
parallel can change their distances from one another (on the earth).”

So far, so good. What we’ve established is that non-flat geometry can
change our concepts of how straight lines behave. Now let’s talk about
gravity. The key example here is the falling elevator. But just to bring
things into the space age, consider instead that you have the same perfectly
spherical earth – with uniform volume – and two space labs a distance 100
miles from the earth and 10 miles apart from one another. Both are traveling
towards the earth’s center at the same speed as one another. In each lab,
physicists are testing Newton’s first law. They take a ball and suspend it
in their lab. It doesn’t move. Newton’s first law is confirmed. But now
they look our the windows of their labs and look at what’s going on in their
neighbor’s lab. Let’s pretend they can only look horizontally so they don’t
see the earth (and in fact don’t even know the earth is there). What they’ll
notice, is that the two balls (each in their respective lab) are drifting towards
one another in apparent violation of Newton’s law. You might object that
this example is too contrived since clearly the two labs are converging on one
another. So instead, imagine the two labs as collinear and falling towards the
earth. One is 100 miles from the earth and the other is 1000 miles from the
earth. Again, in each lab, the balls stay put. But if the two experimenters
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are able to see each other’s balls with a supertelescope, they’ll notice that
the balls are accelerating towards one another.

Bingo! This is the same phenomenon as we saw with the parallel lines
on the sphere. Instead of ”travel in as straight a line as possible northward”
(for the sphere) we have ”keep a ball suspended without an apparent acting
force”. In both cases, when comparing notes to a traveler or experimenter
some distance away, we discover that there is relative displacement or motion.

Leap of faith! The case of gravity exhibits characteristics of the case of
the sphere, hence gravity is simply a manifestation of geometry.

1.2 Details, details

In point of fact, the two above examples share slightly more mathematical
formalism than indicated. In order to be precise about the sphere, we need
to say what we mean by ”a straight as possible”. As usual, the mathematics
provides an abstraction of intuitive concepts. Since limits are required, the
formalism tends to make demands on how various derivatives behave. In any
case, one common and relevant intuition, is that the traveler on the sphere
has two large flat pieces of paper with straight lines on them, and then lays
out the papers on the ground (obviously bending it just a tiny bit to fit
the earth’s contour). The two pieces overlap one another a little bit, and
the traveler makes sure the lines overlap one another ’as much as possible’.
Then after traveling along the two pieces of paper following the line, the first
paper is removed and placed in front of the other and the process is repeated.
This intuitive approach becomes the key to the mathematical definition of a
manifold and ultimately a geometry. The pieces of paper are thought of as
charts or maps (think of Mercator projection) and the conditions determining
the calculability of quantities on the manifold, are conditions having to do
with behavior of overlapping charts.

Just like the travelers on the sphere carry their own charts (the pieces
of paper with straight lines), the experimenters in their labs carry their own
charts – in this case equipment capable of determining that a ball isn’t moving
(as much as possible). HOWEVER, we haven’t established that a chart-like
behavior necessarily implies a geometric surface.

Mathematically, we need to impose certain conditions on the behavior of
experiments in spacetime and how those experiments relate to one another
when comparing them at a finite distance (and that requires a mathematically

2



precise notion of distance). IF those conditions hold, then spacetime can be
described as a geometry in just the same way that the earth’s surface is
described as a geometry.

As it turns out, the mathematical conditions leading to geometry, seem
pretty reasonable. But it could be important to keep in mind just what as-
sumptions lead to the geometrical interpretation. Steven Weinberg, in his
book on gravitation, makes a concerted effort to show what those assump-
tions are and what physical things they correspond to.

There’s nothing new about this kind of thing in physics. Classical me-
chanics relies heavily on assumptions about differentiability. Few physicists
spend much time questioning those assumptions. On occasion, when it be-
comes necessary to introduce discontinuous functions (e.g. phase transitions),
phsyicists and mathematicians have come up with formulations that are su-
perimposed on more familiar differentiable structures.

In the same way, we find that most practicing physicists at this point,
accept the geometrical picture of spacetime as the mathematical foundation
for gravity. I think that if there were failures of the geometrical picture,
they would probably be treated as some kind of limiting case of geometries.
Maybe a good example to consider is the Ptolemaic theory of the universe
where stellar and planetary motions were regarded as circles superposed on
circles. Although the ancients didn’t know about Fourier series, we now know
that the underlying mathematics has to do with periodic motion and that
one can approximate periodic orbits by an infinite series of circular motions.
If, eventually, too many complexities are required for a proper interpretation
of gravitational geometry, then that could lead to a different way of thinking
about things, where geometry is just an approximation.

In some sense, we may already be seeing some motion towards a ’deriva-
tion of geometry’. String theory, which is based on a 2D geometry (and is
therefore not obviously related to spacetime) leads, on the basis of some very
simple assumptions to Einstein’s (4D geometric) equations. But of course,
that still leaves the question of “how do you derive string theory?” (i.e., what
is the motivation, the evidence and the set of axioms regarded as ‘reason-
able’?).

2 Tensors

Once we are convinced that the right arena for gravity is geometry, then
our fundamental rule is this: at every point in spacetime, one can find a
chart (i.e. coordinate system) where the laws of physics are precisely the
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ones which we get when there are no gravitational forces. For example,
Maxwell’s equations. But the mathematicians have taught us a way to write
those equations involving operators and quantities that are ‘native’ to the
geometry (for example, we know that a great circle on a sphere is a straight
line on a local chart – so the ‘native’ quantity corresponding to a straight
line, is the great circle). Many of the laws of physics involve indices (having
to do with Lorentz transformations) and the ‘native’ quantities also involve
indices. But those native quantities are tensors and, unlike the case of flat
space, upper indices and lower indices may be related to one another via a
complex metric tensor. Even more important is the ‘native’ interpretation
of differentiation. (Think about how you’d want to define differentiation
along a great circle.) This leads to the idea of covariant derivatives and
the connection symbols (Christoffel or Levi-Civita) – the connection symbols
being a necessary requirement for ‘connecting’ maps at two different base
points.

Just as, in relativistic physics, Lorentz invariant equations require the
same tensor structure on both sides of the equation, so in general-relativistic
physics, the geometry requires the same tensor structure on both sides.

Now for the ‘derivation’ of Einstein’s equations. Einstein knew that the
source of gravity – i.e, the source of the geometry – was mass. He also knew
that mass and energy were the same thing and that the correct Lorentz
tensor (if you want to construct a Lorentz-invariant theory) was the energy-
momentum vector. Another aspect of a relativistic theory, is that it has to
sensibly handle the notion of action at a distance, for which it makes much
more sense to speak of something like a field – to wit, the energy-momentum
‘density’ – which is treated relativistically as the ‘energy-momentum tensor’.

So, on the right side of the equation you have the energy-momentum (2-
index) tensor and on the left side, you have some Lorentz-covariant tensors
containing combinations of the metric tensor and their derivatives. Now we
can impose some restrictions on what kinds of terms are valid. For exam-
ple, we might insist that the left-hand side has the same dimensions as the
RHS but WITHOUT requiring the introduction of any new dimension-ful
constants (beyond G, c etc.). To see a set of reasonable assumptions, look
at Weinberg section 7.1. Under those assumptions, we end up with the LHS
consisting of combinations of the Ricci tensor, Ricci scalar and metric tensor.
Then with a few other assumptions – including the necessity of matching up
with classical gravity for slow objects – Einstein’s equation can be derived.
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3 Heisenberg versus Schrodinger states

Strangely, while thinking of general relativity, I bumped into an issue ger-
mane to field theory (and to my current readings on quantum field theory
in curved spacetime). Remember that in old-fashioned non-relativistic quan-
tum mechanics, there were two important equivalent formulations of quan-
tum mechanics. In one formulation, known as the ‘Schrodinger picture’,
states evolve in time, and operators are regarded as time-independent ob-
jects (if you measure ‘position’, the act of measurement shouldn’t depend
on when the measurement is done). In the other formulation, the states are
time-independent (the ‘state of a system’ should have the same meaning no
matter when you look at it) but the operators evolve in time. The two pic-
tures are related to one another by unitary operators and the reason the two
pictures are equivalent, is that the only physically meaningful quantities are
ones where you perform a measurement on a state – so as long as one or the
other evolves with time, you get the same answer (but don’t double-count!)

I’ve tended to think that the same kind of pictures could be used in rel-
ativistic quantum mechanics and formally, since the two pictures are related
via unitary transformations, it’s true that one could derive one picture from
the other.

However, just like with general relativity, it’s really important to think
about what various terms ‘mean’. A relativistic formulation of quantum me-
chanics cannot (easily) make ‘time’ special, compared to ‘space’. In any
straightforward generalization of non-relativistic quantum mechanics, the
distinction between time and space poses a problem. For example, in n-r
q.m., position is treated as something observable whereas time is a parame-
ter.

What field theory does, is to change the problem statement to one where
the operators are both time and space dependent and where time and space
are both treated as parameters. This is a non-trivial generalization. But
in particular, it is a generalization of the Heisenberg picture – not of the
Schrodinger picture.

So in field theory, states are both time and space independent. What
does that mean? It does NOT mean that the state is regarded as something
occurring at a single point in time and space. In particular, one should not
picture the state as containing information about the system for all points
of spacetime in the universe.

But what does it mean to say the system evolves? Unfortunately, our
ideas of evolution tend to track more closely with the Schrodinger picture,
in which the state of the system changes with time. For example, when we
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speak of a scattering experiment, we consider a particular state in the far
past, then watch it evolve into the far future. But that’s not a Lorentz in-
variant concept. In a different frame of reference, the original ‘state in the far
past’ is extended across the universe but at different times – since what was
simultaneously at time T in one reference frame, isn’t simultaneous in the
other reference frame. In fact, this very issue is what leads to the behavior
known as entanglement (or more precisely, the behavior known as entangle-
ment is potentially surprising when attempting to reconcile interpretations
with relativity).

As it turns out, the mathematical formulation is consistent (or appears to
be, although the famous black hole information paradox might cast doubt on
consistency) so allows us to punt on the various interpretations. For example,
the scattering problem is posed formally as a problem where particles are cre-
ated in the far past (in whatever reference frame is chosen) by the operation
of field operators on THE vacuum which happens to be frame-independent.

What wasn’t really noticed or commented upon until the 1960’s, is that
the very concept of particles in field theory, is only consistent amongst in-
ertial frames of reference (i.e. frames related to a rest frame via a Lorentz
transformation). In non-gravity physics, there is no reason to ever consider
anything other than inertial frames, so there was no ambiguity about the
meaning of particles. But once we admit gravity into the picture, then we
allow generalization of all concepts to non-inertial frames. So, for example,
if you are doing an experiment in an accelerating rocket, you could pick your
frame of reference to be the rocket. Since it’s accelerating, you don’t observe
Newton’s first law, but since you are a master mathematician, you can com-
pensate by figuring out the effect of the acceleration of your rocket. One of
the peculiar effects of acceleration is that you might count the number of
particles you see differently than if you passed by a rocket at rest where the
experimenter just happened to see what particles were in your lab. Like I
said, you could do all the appropriate mathematics and figure out the rela-
tionship between the number of particles you see and those seen in a rest
frame. But what if instead of acceleration, you were experiencing a gravita-
tional field? You’d get the same results as acceleration. But there’d be no
reason to relate it back to an inertial frame since, after all, the ‘real world’
is the one where there is gravity.

What you’re left with, is the fact that particle-number is frame-dependent.
This leads to the very strange fact that particle-number is also dependent on
the gravitational field. But what is really going on is simply that you need
to pick a reference frame. The full generality of general relativity doesn’t
actually tell you what reference frame to pick. That’s something ‘extra’ and
has to do with convenience.
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