
What next? A review of the QFT we’ve done,
and thoughts about what to do next

Bill Celmaster

September 8, 2021

1 Proposals for what to do next

� Consolidate and then extend what we’ve done in QFT by reading
through a high-level undergraduate text. One such book is “Modern
Particle Physics” by Mark Thomson. It is well-reviewed and appears
readable. I could summarize key points as we read through them, or
elaborate on certain parts of the text as desired.

� Continue tackling special topics based on customized notes. There’s
lots of fun areas to explore but things will become increasingly frag-
mented.

� Choose a different text after we decide collectively what kind of thing
we want to focus on.

2 What does a Quantum Field Theorist do?

1. Model building: This is where we try to come up with new Lagrangians
designed to exhibit patterns (e.g. symmetries) observed in experiments,
or designed to avoid theoretical inconsistencies etc. We’ve done some
model building by looking for Lagrangians that are invariant under
representations of the Lorentz group, and that led us for example, to
the Dirac equation.

2. Compare models to experiments: This is where we use computational
tools such as perturbation theory (e.g. Feynman diagrams), lattice
techniques, group representations etc. to predict particle masses, prop-
erties and scattering amplitudes. We’ve done a bit of that in the past
month in analyzing particle masses and properties.
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3. Analyze theoretical properties of the field theories associated with var-
ious kinds of Lagrangians. For example, one can look for proofs that in
each order of perturbation theory, all the relevant integrals are conver-
gent. Or one can look for mathematical equivalences between super-
ficially different Lagrangian theories. We did this kind of thing as we
derived, using the path integral, terms of the perturbation expansion.

In any reasonable one-year introduction to QFT, all three of the above are
covered to some extent. Mark Thomson’s text starts off with a bit of extra
emphasis on point 2 (experimental predictions) whereas Kachelriess starts
off heavily oriented towards point 3 (the theory). Lancaster, after reviewing
some quantum mechanics and harmonic oscillators, starts off with point 1
(model building).

3 High Level Review

� The fundamental objects of QFT are fields – indexed functions of space
and time φi(t, x).

� The theory of physics described by QFT is specified by a Lagrangian – a
function of fields and their space-time derivatives, L(φi, ∂µφ

i, ∂µ∂νφ
i, ...)

� We have explored two equivalent formulations of the theory based on
a given Lagrangian.

– The Canonical Formulation Text – Lancaster and Blundell : This
approach is used primarily for identifying the fundamental parti-
cles of the theory and for constructing relativistic generalizations
of the Hamiltonian and the Schrodinger equation. For example,
we obtained the Dirac equation, and we also examined properties
of particle mass-degeneracies.

* First treat the fields as complex functions, and write down
the Euler-Lagrange equations.

∂µ
∂L

∂(∂µφi)
=
∂L
∂φi

(1)

The Hamiltonian, H, is defined to be a particular combination
of the fields and their derivatives.
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* Then assert that the fields are really complex linear operators
(on a Hilbert Space) which obey those Euler-Lagrange equa-
tions. At this point we have only asserted that the fields are
operators but we haven’t said what the Hilbert space is.

* We learn more about the operators and their Hilbert spaces
by stating the canonical commutation relations of the
operators, e.g.

[φi(t,x),
∂L

∂(∂µφj)
(t,x′)] = iδ(x− x′)δij (2)

* Generally we solve these equations by perturbation theory.
We rewrite the Lagrangian in terms of a free part L0 and an
interacting part λLI as

L = L0 + λLI (3)

The free part consists of terms that are quadratic in the fields,
and the interacting part consists of the remainder. The pa-
rameter λ is called the coupling constant and is a real number.
When it is small, we can derive a perturbative expansion in
orders of λ.

* The Euler-Lagrange equation for the free part can be solved
exactly. Then, using the canonical commutation relations, we
can determine the Hilbert space and therefore the fundamen-
tal particles of the theory. There are two important concepts
we’ve encountered.

· The lowest-energy eigenstate is called the vacuum state,
or simply the vacuum.

· Single particles of momentum k are ‘created’ by apply-
ing the operator ai†k to the vacuum state. That operator
is called the creation operator and its adjoint is called
the annihilation operator. Both the annihilation and
creation operators can be constructed as linear combina-
tions of the fields.

� The Feynman Path Integral Text – Kachelriess : This approach is used
primarily for computing scattering probabilities, where two particles
collide (scatter) and probabilities are computed for the outcomes (par-
ticle such-and-such with momentum such-and-such). Since the path
integral approach involves only complex-valued fields and not opera-
tors, it can be much easier to use in certain circumstances, than the
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canonical formalism. In addition, I personally find the path integral
much easier to visualize than the operator approach. In fact, since it’s
an integral which sums up the phases corresponding to each path, one
can approximate it by numerical computation and this technique (lat-
tice quantum theory) is very successful for computing quantities that
aren’t amenable to perturbation theory.

– First use the above Lagrangian to construct the generating func-
tional Z[J ]

Z[J ] ≡
∫
Dφiei(

∫
d4xL(φi)(x)+

∑
i J

i(x)φi(x)+iε) (4)

where Dφi denotes a multi-dimensional integral with one integral
for each index i and for each point (t,x) of space-time, and φi and
J i are complex-valued functions.

– Next define the Green functions Gi1i2...in(x1, x2, ..., xn) as

Gi1...in(x1, ..., xn) = (−i)n 1

Z[0]

δnZ[J ]

δJ i1(x1)...δJ in(xn)
|Ji(x)=0 (5)

– We use the Green functions to compute the scattering matrix.
For example 〈pout1 , pout2 |S|pin1 , pin2 〉 denotes the probability ampli-
tude that two particles with ingoing momenta pin1 , p

in
2 collide and

end up as two particles with outgoing momenta pout1 , pout2 . For this
example assume that the initial and final particles have mass m
and are obtained from the quantum field φ(x). Then the calcula-
tion to be performed is this:

〈pout1 , pout2 |S|pin1 , pin2 〉 =

(−(pout1 )2 +m2)(−(pout2 )2 +m2)(−(pin1 )2 +m2)(−(pin2 )2 +m2)

[i

∫
d4x1e

−ipin1 ·x1 ][i

∫
d4x2e

−ipin2 ·x2 ][i

∫
d4x3e

+ipout1 ·x3 ][i

∫
d4x4e

+ipout2 ·x4 ]

G(x1, x2, x3, x4).
(6)

This equality relating the S-matrix to the Green function, is an
example of the LSZ theorem and is easily generalized to more in-
going and outgoing particles with multiple masses and associated
with other quantum fields.

4



– We can also learn about the particle spectrum from Green func-
tions and scattering experiments. For example, suppose we collide
an electron and a positron. If the energy of collision is larger than
about 91 GeV, then this would be enough energy to create a Z
particle. It turns out that the Green function can be computed
to leading order of the coupling constant and leads to a scattering
matrix

|〈pout1 , pout2 |S|pin1 , pin2 〉|2 ∝
E2

[(4E2 −M2
Z)]2

g(θ, ...)

where the centre-of-mass energy is 2E and the angle of scatter-
ing is θ. Indeed, in an actual experiment we see the scattering
probability peaks at around 91 GeV. This illustrates that we can
extract particle masses from Green functions and not only from
the canonical formalism above.

4 Some interesting topics we haven’t

discussed (much)

* Color SU(3) – each flavor (e.g. ‘strange’) of quark come in 3
colors.

* Gauge/local symmetries – these lead to symmetry-derived
forces such as the strong force, and to their mediating fields
such as the gluon field.

5



* SU(3) x SU(2) x U(1) – a gauge symmetry currently regarded
as the best fit to the world (part of the ‘standard model’).

* Broken symmetry and the Higgs meson – Susskind gave a talk
on this, but there are much more straightforward treatments.
Broken symmetries are responsible for particle masses.

* Asymptotic freedom – the strong interactions, when acting
at short distances (high energies) become weaker and thus
amenable to perturbation theory (at high energy).

* SU(5), O(10) and other generalizations of SU(3) x SU(2) x
U(1) – sometimes known as Grand Unification or GUTS.

* Massive neutrinos – mostly interesting because back in the
70’s, neutrinos were known to be massless. There were inter-
esting astrophysical and theoretical reasons to question this,
and experiments now show that neutrinos have nonzero mass.
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