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Some recent experiments claim to have produced tetra-quark particles
– mesons built out of 4 quarks. One of the latest results was submitted
for publication in March 2021 by a collaboration from the Large Hadron
Collider at CERN. The authors speculate that this particle has composition
“c̄cus̄”. This notation is read as “anti-charm-quark, charm-quark, up-quark,
anti-strange-quark”.

Recall articles have the same mass but opposite quantum numbers (e.g.
strangeness, charge, etc) from their anti-particles

Recall that the strange quark has a strangeness of -1 and a charge of -1/3.
The up quark has a strangeness of 0 and a charge of +2/3.

PROBLEM 1: What is the expected strangeness and approxi-
mate mass of this newly discovered tetra-quark meson?

Assumptions

� The Hamiltonian of the tetra-quark system is

H = mu +ms +mc +mc + V (x1,x2,x3,x4) + A

∑
si · sj

mimj

(1)

where V is some potential energy dependent on the 4 positions of the
quarks (and probably linear in the distance between quarks) and A is
a spin-coupling coefficient.1

1The form of the Hamiltonian is actually far more complicated but for the purposes of
this exercise, assume that all potential energy and spin interactions contribute negligible
energy to the lowest-energy eigenfunctions.
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� The most significant energy contribution of the Hamiltonian comes
from the mass-energies of the quarks so you can ignore contributions
of the potential V and the term proportional to A. 2

� Assume, based on fitting masses of more conventional particles, that
mu = 300MeV, ms = 500MeV, mc = 1500MeV.

SOLUTION TO PROBLEM 1

� The ‘strangeness’ content of the tetra-quark is determined by the strangeness
values of its constituent quarks. Only the s̄ quark (anti-strange quark)
has a strangeness value. Since a strange quark has value -1, then the
anti-strange quark – and hence the tetra-quark particle – has strangeness
1.

� The mass of the tetra-quark system is defined to be its ground-state
energy at rest – by which I mean the lowest-energy eigenvalue of the
Hamiltonian. (When I specified the Hamiltonian in eq. (1) I assumed
it was at rest, otherwise there would have been an additional kinetic
energy term.) By assumption for this lowest-energy state, the dom-
inant contribution to the Hamiltonian comes from the mass terms,
mu + ms + mc + mc = (300 + 500 + 1500 + 1500) MeV = 3800 MeV.
Here is the paper that discusses the discovery of this particle: https:

//arxiv.org/pdf/2103.01803.pdf. What the paper tells us is that
“The most significant state, Zcs(4000)+, has a mass of 4003±6... MeV.”
It’s interesting to notice how close this mass is to the one we predicted.

PROBLEM 2 – HARDER: The new particle turns out to have
spin 1. What other possible spins could it have had?

Hints

2In the future, excited states – particles with higher masses – might be found but
assume the first ones found are the lightest.
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� Recall that two quarks, each of spin 1/2, can combine to form degenerate-
mass states of spin 0 and spin 1. In group language, we write

1

2
⊗ 1

2
= 0⊕ 1 (2)

where 1
2

denotes the 2-dimensional (spin 1/2) irreducible representa-
tion, 0 denotes the 1-dimensional (spin 0) irreducible representation,
and 1 denotes the 3-dimensional (spin 1, also known as vector) irre-
ducible representation.

� Tensor product decompositions follow the associativity and distribution
principles – in particular

(A⊗B ⊗ C ⊗D) = (A⊗B)⊗ (C ⊗D) (3)

and

(A⊕B)⊗ (C ⊕D) = (A⊗ C)⊕ (A×D)⊕ (B ⊗ C)⊕ (B ⊗D) (4)

� A tensor of representation N, when tensor-producted with a scalar, is
a tensor of representation N. Symbolically,

A⊗ 0 = A (5)

� Reminder of tensor product of vectors.

1⊗ 1 = 0⊕ 1⊕ 2 (6)

where, as mentioned above, spin 1 has dimension 3 and spin 2 has
dimension 5.

SOLUTION TO PROBLEM 2

� There’s nothing obvious or easy about knowing which are the irre-
ducible representations of a Lie group. That’s a subject unto itself.
However, for this problem, I’ve given you what information you need
for the solution. For those of you curious about such things, there
is one irreducible representation of SO(3) (the rotation group) with
each odd dimension. So there is a one-dimension, three-dimensional,
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five-dimensional etc. irreducible representation and these are known
respectively as spin 0, spin 1, spin 2 etc. In notes, I’ve shown how
to obtain the 5-dimensional representation as consisting of the trace-
less symmetric 2-tensors. I haven’t shown anything beyond that, and
it isn’t especially obvious (although unsurprisingly, it turns out one
can use generalized tensors, and then use various combinations of sym-
metrization and anti-symmetrization). As for SU(2), it has the same
irreducible representations as SO(3) plus an irreducible representation
for each even dimension. The two-dimensional and four-dimensional
representations are known respectively as spin 1/2 and spin 3/2, and
this pattern continues for higher dimensions.

� Since we are dealing with quarks – which are fermions – the appropriate
group to consider is SU(2) rather than SO(3). That’s because rotations
transform fermions ‘up to a phase’ – in particular, if you apply a 360-
degree rotation to a fermion state |ψ〉 it becomes −|ψ〉 (the minus sign
would be absent for a representation of SO(3)).

� Caveat emptor In my hints and generally in my discussion of spin-
1/2 particles, I’ve treated them as 2-dimensional (2 indices) objects
and designated these as being in the ‘1/2’ representation. Strictly
speaking, all of this is wrong, but I’ll continue to do that
much of the time! It turns out that in most cases, the spin-1/2
particles actually are 4-dimensional and are represented by a direct sum
of 2-dimensional representations. In other words, they are reducible,
NOT irreducible representations. We should write the representations
as 1

2
⊕ 1

2
. After so much emphasis on irreducible representations, it’s a

bit of a disappointment that our favorite particles are all in reducible
representations. Rather than examining this issue (which has bearing
on both mass and parity) any further, I’ll go back to the pretense that
quarks have 2-D representations. It turns out that this won’t change
the answers to questions like “what are the possible spins of composite
particles?”

� The question being asked in the problem is this: if we have a sys-
tem consisting of 4 quarks, each of which transform a certain way
under rotations (e.g. a change of axes), then how does the overall
system transform under rotations? Remember that the overall system
can assemble itself into various combinations having different energies
(masses). Furthermore we identify multi-quark ‘particles’ as collec-
tions of equal-energy (mass) bound states that transform into one an-
other under irreducible representations of rotations. So putting these
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thoughts together, we see that the question of interest is ”what are the
irreducible representations which can be created from combinations of
4 quarks?”

� The mathematical rendition of the above situation goes like this: Each
quark qi is a 2-index object (but see the above caveat emptor) which
transforms under a rotation like qi →

∑
j Sijqj. Then if we have 4

quarks, q1, q2, q3, and q4, these transform collectively as q1i1q
2
i2
q3i3q

4
i4
→∑

j1j2j3j4
Si1j1Si2j2Si3j3Si4j4q

1
j1
q2j2q

3
j3
q4j4 . This is a tensor-product rep-

resentation. Schematically, we describe this transformation rule as
1
2
⊗ 1

2
⊗ 1

2
⊗ 1

2
. This then gives the transformation rule for the com-

posite particle that consists of 4 quarks. We have, in fact, constructed
a 16-dimensional (2 x 2 x 2 x 2 indices) representation of SU(2). This
representation is reducible. What that means is that we can decom-
pose this 16-dimensional space into smaller-dimensional spaces which
transform into themselves under the above tensor-product. Each such
space describes a set of 4-quark states, whose spin corresponds to the
dimensionality of that space (so for example, if one of the spaces is
3-dimensional, then those 4-quark states are spin 1).

� Now, we’re ready to apply the hints and solve the problem.

– From eq. (3) we have 1
2
⊗ 1

2
⊗ 1

2
⊗ 1

2
= (1

2
⊗ 1

2
)⊗ (1

2
⊗ 1

2
).

– Then applying eq. (2) to each of the parentheses on the RHS, we
have

(
1

2
⊗ 1

2
)⊗ (

1

2
⊗ 1

2
) = (0⊕ 1)⊗ (0⊕ 1). (7)

Using the distribution principle, eq. 4 the RHS becomes

(0⊕ 1)⊗ (0⊕ 1) = (0⊗ 0)⊕ (0⊗ 1)⊕ (1⊗ 0)⊕ (1⊗ 1). (8)

Now apply our rule for tensor products with scalars (eq. (5) ).
The RHS becomes 0 ⊕ 1 ⊕ 1 ⊕ (1 ⊗ 1) Finally apply the rule for
tensor products of spin-1(6) to obtain 0⊕ 1⊕ 1⊕ 0⊕ 1⊕ 2.

– We see that the possible spins for the tetra-quark are 0, 1 and 2.
In particular, this is a meson since it has integer spin. There are
three different combinations leading to a scalar particle, two com-
binations leading to a vector (spin-1) particle and one combination
leading to spin-2.
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