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Figure 1: Standard Model Elementary Particles
(diagam from Wiki page https://en.wikipedia.org/wiki/Standard_

Model)
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1 Particles, forces and fields

� Thomson follows the common convention of treating particles and forces
as separate entities. For example, according to Thomson, electrons are
particles whereas electromagnetism is a force.

� However, this separation obscures the critical role of quantum fields.
It also tends to obscure the essential intuition of Newton – namely,
that force-at-a-distance must somehow be caused by the action of some
concrete ‘thing’ going from one particle to the other.

� In a quantum field theory, each field is both associated with a particle,
and also is associated with a force. The ‘force’ aspect of the field is
associated with the Euler-Lagrange equations for the field. The ‘par-
ticle’ aspect of the field arises from the fact that the field is a linear
operator. What it operates on are the states of a Hilbert space – states
that represent particles.

� For example, the electromagnetic field operates on photon states. The
way in which the electromagnetic field interacts with itself and with
other fields is dictated by Euler-Lagrange equations and indirectly this
leads to forces.

� Physicists use an illustrative language to say all this: we say ‘the elec-
tromagnetic force is mediated by photons’, and we draw pictures that
look as though photons travel between the charged particles that are
attracted/repelled to/from one another. This then fits neatly into New-
ton’s intuition although the mathematical details are probably very
different from what he imagined.

� To see why we need to be careful, consider the following: Weak forces
are associated with the vector bosons W± and Z. So we think of the
weak force as ‘carried’ by those vector bosons. But we can also regard
these vector bosons as elementary particles that interact with one an-
other by ‘exchanging’ other vector bosons. Or, even more provocative,
one can regard photons as particles which scatter from one another on
account of the force ‘carried’ by electrons.

� In short, every force is associated with a field, which is also associated
with a particle and vice versa. None of this really contradicts what
Thomson has said, nor the conventional way of talking about forces
and particles. However, in my opinion, the nomenclature ‘elementary
particles’ should embody not only of the leptons and quarks, but also
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the photon, gluons, W and Z bosons (and gravitons). Likewise the
nomenclature ‘force’ should embody not only the familiar forces ‘carried
by’ photons, gluons etc. but also the forces carried by quarks, leptons
etc.

2 Vertices and Feynman diagrams

2.1 Mnemonics for the Feynman diagram on page 8
(Fig. 1.5)

We see two vertices (in this case, strong-coupling vertices) joined together.
This diagram is built using a mnemonic for interpreting the meaning of ver-
tices, free lines and joined lines. The diagram is then used (see next sub-
section) precisely as a schematic representing a particular mathematical ex-
pression which contributes to scattering or decay probabilities. Here are
the mnemonics that Thomson implicitly uses in this chapter.

� The figure is an example of a Feynman diagram.

� By convention (not universal), free lines on the left are interpreted
as incoming particles (e.g. a single particle decays, or two particles
collide) and free lines on the right are interpreted as outgoing particles
(the end-result of a decay or collision). In this sense, and only in this
sense we say that time goes from left to right.

� Vertices are interpreted as in Fig. 1.4. They describe what transitions
are allowed. For example, in Fig. 1.4, the electromagnetic example
shows an incoming electron which emits a photon and another electron
(of different momentum) or alternatively, an incoming electron which
absorbs a photon and emits another electron (in Fig. 1.4, the photon
is shown as neither on the left or right). So, in Fig. 1.5, the top vertex
represents a transition where a fermion emits a boson and another (i.e.
having a different momentum) fermion. Alternatively the fermion
absorbs a boson and emits another fermion.

� Connected lines (i.e. joined to vertices at both ends) are interpreted
as ‘virtual particles’ (more on this shortly). Think of them as though
they are traveling from the top vertex to the bottom vertex – in our
example we would say that the top vertex has emitted a boson OR
from the bottom vertex to the top vertex – in our example,
we would say the fermion has absorbed a boson. In other words,
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the direction of time is unspecified for connected lines. This time-
independence is one of the reasons we call the particles ‘virtual’.

� Remember that the diagram is a mnemonic. In particular, only the
free lines are directly representative of experiments. Everything else
in the diagram is un-measurable. On the other hand, these diagrams
correspond rather nicely to Newton’s intuition that the forces of nature
come from the exchanges of some concrete ‘things’ that enable the
concept of action-at-a-distance.

� Feynman diagrams often label the lines with momenta. Again, only
the free lines have momenta which are measurable.

– A rule (not mentioned before) is that at every vertex, the total
4-momenta must be conserved in the sense that the incoming total
must be equal to the outgoing total.

– For connected lines, there is an ambiguity about incoming and
outgoing. Pick one and calculations will turn out not to care.

– Since free lines represent measurable particles, their momenta
must obey the dispersion relation E2 = p2 +m2, or in 4-momenta
notation we write p0 instead of E. We say that the particles are
on their mass-shells.

– It turns out that we can’t simultaneously conserve momenta at
the vertices, and demand that the connected lines represent par-
ticles on their mass-shells. For example, in Fig. 1.4, the vertices
don’t actually describe physically measurable processes. If you de-
mand conservation of momentum, it turns out this can’t happen
if all particles obey the dispersion relations. In general, the vir-
tual particles have momenta that do not obey the above dispersion
relations. This is yet another way in which the connected lines
don’t correspond to anything experimentally measurable and are
therefore called ‘virtual’.

2.2 Mathematical interpretation of the Feynman dia-
gram on page 8 (Fig 1.5)

2.2.1 Vertices on page 7 (Fig. 1.4)

The pictures are schematic representations of interaction terms in the La-
grangian and illustrate what processes (interactions) are possible. The com-
plete set of Lagrangian terms is huge. What follows are examples of electro-
magnetic, strong and weak interaction terms.
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� Electromagnetism:

LEM = −eψ̄e /Aψe

≡ −e
∑
i,j,k,µ

ψe†i γ
0
ijγ

µ
jkAµψ

e
k + ... (1)

e is the electromagnetic coupling constant, also known as the electric
charge, ψe is the Dirac spinor of the electron field, Aµ is the electromag-
netic four-potential field operator and indices i, j, k are spinor indices
(ranging from 1 to 4).

� Strong interaction:

LQCD = gsψ̄
q
m
/G
a
T amnψ

q
n + ... (2)

gs is the strong coupling constant, ψq is the Dirac spinor of the quark
field, Ga

µ is the octet of gluon-field 4-vectors (the index a ranges from
1 to 8) and T a are the 3x3 Gell-Mann matrices (generators of SU(3)).
The indices m,n are known as color indices. Numerically, they range
from 1 to 3, but are often known as the colors {r,g,b}. Notice that we
have, in this vertex, selected one particular flavor of quark (for example
‘down’ or ‘strange’).

We see that the vertex involves Dirac spinors with the same flavor.
That is, the QCD interaction doesn’t change flavor.

� Charged weak interaction:

LW =
gW√

2
ψ̄eL( /W

−
)ψνeL + ... (3)

The coupling constant is gW (or, if you prefer, gW/
√

2). The field W µ
−

is known as the negatively charged weak vector boson (although people
usually just call it the W−). The fermion fields have a subscript L to
denote that they are multiplied by the projection matrix PL = 1

2
(I −

iγ0γ1γ2γ3). Then ψeL is the Dirac spinor of the ‘left-handed electron’
field and ψνeL is the Dirac spinor of the ‘left-handed electron-neutrino’
field.

� Neutral weak interaction:

LZ = gZψ̄
νe
L
/ZψνeL + ... (4)

The coupling constant is gZ . The field Zµ is known as the Z boson.
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2.2.2 Perturbation Theory

The mathematical interpretation of Feynman diagrams is in the context
of the calculation of either decay amplitudes or scattering amplitudes.
If an amplitude is denoted A, then the probability is denoted |A|2.
Feynman diagrams are schematics for calculations of amplitudes.

A decay amplitude (per unit time) is the amplitude that a single particle
decays into a particular set of outgoing particles. Also of interest is the
cumulative decay amplitude for the particle to decay into anything.
This quantity is inversely proportional to the particle’s lifetime.

A scattering amplitude is the amplitude that two colliding particles
produce a particular set of outgoing particles.

– Amplitudes are derived from path integrals by computing mo-
ments of the form

Gi1...in(y1, ..., yn) ≡
∫
Dφiei(

∫
d4xL(φi))(x)+iε)

n∏
j=1

φij(yj). (5)

In this expression, the Lagrangian is a function of fields shown
generically as φ but which can represent, for example Aµ or ψνe .

– If the Lagrangian were quadratic in the fields, then these moments
could be computed exactly, in the same way that moments of a
Gaussian distribution can be computed exactly.

– This enables us to compute perturbatively. Rewrite the Lagrangian
generically as

L = L0 + λLI (6)

where L0 is the part of the Lagrangian which is quadratic (this
part is called the free Lagrangian) and λLI is the rest, and is
called the interaction term. Here λ is a coupling constant which,
for the purposes of perturbation theory, must be small. Example
interaction terms, representing the schematics of Fig. 1.4,
are given in the previous subsection.

– Then we can expand the exponential in the path integral as

ei
∫
d4x(L0+λLI+iε) = ei

∫
d4x(L0+iε)eiλ

∫
d4xLI

= ei
∫
d4x(L0+iε)

(
1 + iλ

∫
d4y1LI + i2

λ2

2!

∫
d4y1LI

∫
d4y2LI + ...

)
(7)
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– Now, when we compute the path-integral, the exponential term
is quadratic, and the interaction piece has become a series con-
tributing to the moments – all of which are calculable.

– Consider the term i2 λ
2

2!

∫
d4y1LI

∫
d4y2LI where, for example, we

take λLI to be the electromagnetic term from the last subsection.
This becomes1

− e2

∫
d4y1d

4y2

(
ψ̄e /Aψe

)
(y1)

(
ψ̄e /Aψe

)
(y2) (8)

– This represents the schematic of Fig 1.5. The vertex ap-
pears twice. It turns out that we don’t have to path-integrate
the fields which appear as free particles (i.e., altogether 4 fermion
fields ). The moment-integral only has to do with the two ap-
pearances of A. This is the meaning of the connected line. The
moment-integral corresponding to the connected line is known as
the propagator and has the generic form stuff

p2−m2+iε
. The momentum

appearing in this expression is the momentum mentioned in the
previous section and which, as mentioned in the previous section
does not have the property that p2 = m2.2

The most important take-away for this chapter, is that the
amplitude in Fig 1.5 is proportional to e2 and for other Feyn-
man diagrams, is proportional to the product of the coupling
constants appearing at the vertices of those diagrams.

2.3 Problem 1.1 on page 28 – solutions

Most rules can be found on page 7 in Fig. 1.4.

� Part (a): YES. This diagram is the electromagnetism diagram of Fig.
1.4.

� Part (b): NO. Photons (γ) only join vertices with charged particles.
Neutrinos (νe) aren’t charged (see Table 1.1).

� Part (c): NO. Photons preserve charge. This diagram shows a neg-
atively charged electron becoming a positively charge positron. (See
page 10 – the sentences just before the beginning of 1.1.6).

1For sticklers, please note that we haven’t ever said what we mean by path integrals
involving fermions. Technically, these fields are regarded as members of a Grassman
algebra, and integration is defined rather differently than it would be for regular complex-
valued fields. However, miraculously, the formalism works with few modifications.

2Since gluons are massless, this particular example would have m2 = 0.
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� Part(d): YES. This diagram is shown for weak interactions in Fig. 1.4.

� Part(e): NO. The photon doesn’t change flavor. The electron and muon
are different flavors.

� Part(f): YES. This diagram is shown for weak interactions in Fig. 1.4.

� Part (g): NO. The Z-boson doesn’t change flavor. The electron and
tau are different flavors.

� Part (h): YES. (At least, I can’t think of anything prohibiting his
vertex.) The W-boson is allowed to change flavor (and generation).

� Part (i): NO. The gluon only couples to quarks, and not electrons.

� Part (j): YES. The bottom particle is a quark, which the gluon can
couple to.

� Part (k): NO. Gluons don’t change flavor. Down and strange quarks
are different flavors.

� Part (l): NO. Photons only couple to charged particles. Photons aren’t
charged.

� Part (m): NO. The W always changes flavor. The two quarks in this
diagram are both the same flavor (up).

� Part (n): YES. The W can change flavor. Actually, it also changes
charge. The up and down quarks have different flavors and different
charges.

� Part (o): YES. Just as for part(n). The down and top quark are
different flavors and different charges.

� Part (p): NO. There is no such vertex coupling photons to charged
particles. By the way, nothing prohibits vertices with 4 legs, but we
haven’t encountered that kind of thing yet.

3 Why do we think there are only 3 genera-

tions of fundamental fermions?

Thomson, in Table 1.1 on page 3, enumerates the fundamental fermions. For
example, we see that there are two particles that are similar, in every respect
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except mass, to the electron. Those are the muon and the tau. The tau
was only discovered in the past few decades, but the muon was found in
1936, prompting the famous experimental physics Isidor Rabi to say “who
ordered that?” Some natural questions are “Why are there three generations?
Why not one generation? Why not 5?” Since successive generations are
increasingly massive, one natural possibility is that we’ve simply been unable
to generate enough collider energies to produce particles more massive than
those of the third generation. Here’s some of the current thinking.

3.1 General considerations

� We assume that if there were a 4th generation (for example), that
its members would behave more or less the way members behave in
the other generations. That is, those fermions would couple to gauge
bosons with similar coupling strengths found in the other 2 genera-
tions. So the fourth-generation quarks would couple to gluons, the 4th
generation charged lepton would have charges of + and - (as opposed
to charges of +2 and -2 or +3 and -3, etc.).

� We also assume that if there were a 4th generation, the 4th-generation
neutrinos would be exceptionally light, just like the lower-generation
neutrinos. This turns out to be a crucial assumption.

� Notice that the other leptons (electron, muon, tau) are all relatively
light compared to the top quark and, in particular, the Z-boson. How-
ever, in looking at the ratio of masses between the top quark and the
charm quark (the +2/3-charge members of the second and third gen-
eration) we see that it’s possible for generational masses to have ratios
of a couple of orders of magnitude. So it might not be unreasonable to
think that a 4th generation version of the electron would have a mass
of over 100 GeV.
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3.2 Decays of the Z-boson

Z

𝑓

ҧ𝑓
M = 91.2 GeV

This Feynman diagram shows a Z-boson decaying into a fermion plus
anti-fermion pair. The decay can happen provided that the fermion and
anti-fermion together have rest masses that total less than 91.2 GeV. That
way, energy can be conserved (the fermion and anti-fermion each would have
some kinetic energy) and momentum could be conserved by having the two
product particles go off in opposite directions.

� Lifetimes are indirectly given in terms of a quantity called Γ. ΓZ is
a measure of the total lifetime of the Z boson. This can be directly
measured in scattering experiments. ΓZ = 2495 MeV.

� It’s also possible to directly measure the decay probability into hadrons
(which are produced by quarks) and charged leptons. Γquark+Γcharged leptons =
1997 MeV.

� The Z-boson also decays into neutrino/anti-neutrino pairs. These inter-
act so weakly that they pass through detectors so that their decay prob-
abilities can’t be measured. However, theory predicts fairly precisely
what they contribute. According to theory, each species of neutrino
contributes the same as any other species, so for example Γνe = 168
MeV, according to theory.

� With exactly 3 generations, this prediction when added to the hadron
and charged-lepton contributions gives ΓZ-predicted = 2501 MeV.

� We see this is extremely close to the total measured lifetime of the Z.
One more generation would give different results. Even if we were to
assume that the charged particles of the 4th generation were all too
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heavy for Z to decay into them, the neutrino are unlikely to be too
heavy and therefore should contribute. But clearly there is no such
contribution.
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