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The following are useful: c = 2.9979 x 108 m/s and ~ = 1.0546 Ö 10−34 J·s =
1.0546 Ö 10−34 kg m2s−1

1. A proton has a mass of approximately 1 GeV. Convert that to MKS
(S.I.) units.

SOLUTION: A ‘GeV’ is a unit of energy, with a conversion of 1 GeV =
1.6021773 x 10−10J = 1.6021773 x 10−10 kg m2s−2.

The following argument follows the general approach for conversions
involving natural units.

� The idea of using natural units, is that you express quantities
as multiples of some product of c’s and ~’s, and then proceed to
set c = 1 and ~ = 1. You end up with a quantity that appears
to have ‘wrong’ units (for example, its seems wrong to express a
mass as ‘GeV’ or ‘Joules’). But that’s because you’ve been lazy
and ‘forgotten’ to include the c’s and ~’s (because you set them
to 1). So, to get the right units, you need to first figure out what
you should have written. Then you perform the conversion.

� We want the mass of the proton in terms of kilograms and not
Joules. So we need to use combinations of c and ~ that can be
used to transform units of the form kg m2s−2 to ‘kg’.

� The trick is to find what product has the units s2 m−2.

� It’s easy to see that the term 1/c2 has those units. Furthermore,
that’s the only combination which has those units.

� That tells us that we should have said “the proton mass is ap-
proximately 1GeV/c2 ”.
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� Now we can do the conversion.

mp =
1.6021773 x 10−10 kg m2s−2

c2

=
1.6021773 x 10−10 kg m2s−2

(2.9979 x 108 m/s)2

= 1.78269 x 10−27kg

(1)

2. An electron has a speed of 0.5 in natural units. What is its speed in
km/sec?

SOLUTION: Following the logic above, we’ve been given the speed
0.5, without units. That’s wrong. The units need to be in m/s. The
only combination of c and ~ which ends up as m/s, is c. So we can
rewrite the speed of the electron as ve = 0.5c. Then we convert. ve =
0.5 x 2.9979 x 108 m/s = 1.49895 x 108 m/s.

3. ** Start with the one-particle relationships E = γm and p = γmv.
Prove that pµpµ = m2.

SOLUTION:
pµ = (γm, γmv) (2)

so
pµ = (γm,−γmv) (3)

Using the Einstein summation convention, we have pµpµ ≡
∑µ=3

µ=0 p
µpµ,

so
pµpµ = (γm)2 − (γm)2 v2

= m2γ2(1− v2)

= m2 1

1− v2
(1− v2) = m2

(4)

where we notice that the dot product of v with itself is v2, and where
we have also used the definition of γ.

4. Suppose a moving proton has an energy of 2 GeV. What is its speed?

SOLUTION: Recall that E = γmc2. I’ve explicitly included the
factors of c so that we don’t have to go through the deduction process
of figuring these out based on units. Also keeping factors of c, we write

γ =
(√

1− v2/c2
)−1

.

In Exercise 1, we learned that a proton has a mass of about 1 GeV, by
which we meant that mc2 = 1GeV. Since the moving proton has an
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energy of 2 GeV, we then see that

2 GeV = γ(mc2) = γ(1 GeV) (5)

so γ = 2. Then γ2 = 4 from which we conclude that

1

1−
(
v
c

)2 = 4 (6)

from which we obtain (v
c

)2
=

3

4
. (7)

Thus v =
√

3/4c = 0.866 x 3.00 x 108 m/s = 2.60 x 108 m/s.

5. ** Suppose we have a system of two protons colliding head-on so that
their total 3-momentum is 0 (also known as the center-of-mass frame).
If each has a speed of 0.5 in natural units, what is the invariant mass
of the system?

SOLUTION: The invariant mass of the system is defined on page 37
of the text, as

M2
I = (E1 + E2)

2 − (p1 + p2)
2 (8)

Because the system is in its center-of-mass, the momenta are equal and
opposite so (p1 + p2) = 0. Thus M2

I = (E1 + E2)
2.

As in the previous exercises, E1 = γmc2 = γ x 1 GeV.

γ =
1√

1−
(
v
c

)2 =
1√

1− 0.52
= 1.155 (9)

Putting all this together, the invariant mass is

MI = (1.155 + 1.155) GeV = 2.31 GeV. (10)

6. ** My original problem statement was very poorly posed to
the point of probably being unintelligible. So what follows
is a restatement and solution. In my notes, I showed that in the
s-channel Feynman diagram (first diagram of Figure 2.2 in the text),
the value of q is (p1 + p2) so that q2 is just the Mandelstam variable
s. On page 39 of the text, the Mandelstam variable s is also said
to equal (p3 + p4)

2. Show this by using the same Feynman diagram,
but focusing on the right vertex. Also, notice that if momentum is
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conserved at each vertex, then it is ultimately conserved between the
incoming and outgoing particles.

SOLUTION: On the right vertex of that Feynman diagram, we see
that conservation of momentum implies that q = p3 + p4 therefore
q2 = (p3 + p4)

2. But from the left vertex we found that q2 = s. So this
shows that s = (p3 + p4)

2.

Another approach which doesn’t rely on Feynman diagrams, is to sim-
ply notice that the momentum of ingoing particles is the same as for
outgoing particles (i.e., overall conservation of momentum for the pro-
cess).

7. Problem 2.12 in the book. Prove that s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4.

SOLUTION: Before showing the proof, it’s worth mentioning that
this identity is frequently used for simplifying various scattering ampli-
tudes.

The proof that follows was provided by Steve Rubin and is much sim-
plified from the proof that I originally offered in the first version of
these solutions.

On page 39 of Thomson, the Mandelstam variables are defined as fol-
lows:

A B

s = (p1 + p2)
2 = (p3 + p4)

2

t = (p1 − p3)2 = (p2 − p4)2

u = (p1 − p4)2 = (p2 − p3)2

Start by taking the definition of all three variable from column A.
Then, the proof proceeds as follows:

s+ t+ u = (p1 + p2)
2 + (p1 − p3)2 + (p1 − p4)2

= 3p21 + p22 + p23 + p24 + 2p1p2 − 2p1p3 − 2p1p4

= p21 + p22 + p23 + p24 + 2p21 + 2p1p2 − 2p1p3 − 2p1p4

= m2
1 +m2

2 +m2
3 +m2

4 + 2p1 [p1 + p2 − (p3 + p4)]

= m2
1 +m2

2 +m2
3 +m2

4 + 2p1 [0] (conservation of momentum)

= m2
1 +m2

2 +m2
3 +m2

4
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8. ** Following the proof in the book for 3D, prove the continuity equation
for a one-dimensional system with coordinate x. Namely,

∂xj + ∂tρ = 0 (11)

where

j =
1

2im
(ψ∗∂xψ − ψ∂xψ∗) . (12)

The 1-D Schrodinger equation to use is given at the bottom of page 41
and is

i
∂ψ(x, t)

∂t
= − 1

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t). (13)

SOLUTION: Take the complex conjugate of the Schrodinger equa-
tion:

− i∂ψ
∗(x, t)

∂t
= − 1

2m

∂2ψ∗(x, t)

∂x2
+ V (x)ψ∗(x, t). (14)

Multiply eq. (13) by ψ∗, multiply eq. (14) by ψ and then subtract the
second product from the first. We obtain

− 1

2m

(
ψ∗(x, t)

∂2ψ(x, t)

∂x2
− ψ(x, t)

∂2ψ ∗ (x, t)

∂x2

)
+ (V (x)ψ∗(x, t)ψ(x, t)− V (x)ψ(x, t)ψ∗(x, t)) =

i

(
ψ∗(x, t)

∂ψ(x, t)

∂t
+ ψ(x, t)

∂ψ∗(x, t)

∂t

)
.

(15)

The terms that include the potential V can be seen to cancel each
other. The above equation can then be shown (perform the derivatives
to convince yourself) to be equivalent to

− 1

2m

∂

∂x

(
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x

)
= i

∂

∂t
(ψ∗(x, t)ψ(x, t)) .

(16)

If we then set j = 1
2im

(ψ∗∂xψ − ψ∂xψ∗) and ρ = ψ∗(x, t)ψ(x, t), then
above equation becomes

∂j

∂x
+
∂ρ

∂t
= 0, (17)

which is what we set out to show.
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