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1 Exercises

The four exercises with stars are probably the most instructive. I’ll only
provide answers is someone asks for them. Also consider the text problems
2.1, 2.2, 2.4, and 2.5.

1. A proton has a mass of approximately 1 GeV. Convert that to MKS
(S.I.) units.

2. An electron has a speed of 0.5 in natural units. What is its speed in
km/sec?

3. ** Start with the one-particle relationships E = γm and p = γmv.
Prove that pµpµ = m2.

4. Suppose a moving proton has an energy of 2 GeV. What is its speed?

5. ** Suppose we have a system of two protons colliding head-one so that
their total 3-momentum is 0 (also known as the center-of-mass frame).
If each has a speed of 0.5 in natural units, what is the invariant mass
of the system?

6. ** Below I show the Mandelstam variable s is equal to (p1 + p2)
2. On

page 39, the Mandelstam variable s is also said to equal (p3+p4)
2. Prove

this by using the same technique I used below, but acting on the right
vertex. Also, notice that if momentum is conserved at each vertex, then
it is ultimately conserved between the incoming and outgoing particles.

7. Problem 2.12 in the book.
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8. ** Following the proof in the book for 3D, prove the continuity equation
for a one-dimensional system with coordinate x. Namely,

∂xj + ∂tρ = 0 (1)

where

j =
1

2im
(ψ∗∂xψ − ψ∂xψ∗) . (2)

The 1-D Schrodinger equation to use is given at the bottom of page 41
and is

i∂tψ(x, t) = − 1

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t). (3)

2 Chapter 2.1 – Units

Many physical predictions are ratios. So, if you predict that an object will
have a length of 3 meters, what you mean is that the length ratio between
that object and a standard meter-stick is “3”. “Units” (like ‘meters’) are a
way of keeping track of baselines used for obtaining ratios. In field theory,
this concept is particularly important to remember, because ratios can be
finite even if the numerator and denominator both diverge.

� Natural units are ~ = c = ε0 = µ0 = 1.

� When using natural units, energy is given in Giga-electron-volts (GeV).

� 1 GeV = 1.6 x 10−10 J.

� In natural units E = m, so particle masses are also given in GeV.

3 Chapter 2.2 – Special relativity

� The symbol β is defined as v/c but in natural units β = v.

� The symbol γ is defined as 1√
1−β2

, or more familiar 1√
1−v2 .

� If observer A has coordinates t,x,y,z and if observer B – with coordi-
nates t’,x’,y’,z’ – is moving at velocity v in the positive z direction with
respect to observer A, then the coordinates are related by

x′ = Λx (4)
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where the 4-vector x is defined as

x =


t
x
y
z

 , (5)

the 4-vector x′ is defined as

x′ =


t′

x′

y′

z′

 (6)

and the Lorentz transformation Λ is defined as

Λ =


γ 0 0 −γv
0 1 0 0
0 0 1 0
−γv 0 0 γ

 . (7)

Notice that Thomson writes β instead of v in his Lorentz transformation
matrices. In natural units (which we are using) they are the same. I’ve
used v since that notation might be more familiar to some of you.

One more thing. The term 4-vector connotes two things:

– It’s an object with 4 components and which combines with other
such objects following the usual addition and scalar-multiplication
rules of vector spaces.

– It’s an object which transforms from one frame to another by a
Lorentz transformation as shown. This part of the definition
of 4-vector is not part of the standard mathematics defi-
nition of vectors in a vector space.

� Whenever possible, we compute quantities which are the same in all
inertial frames (unaccelerated observers moving at constant velocities
relative to one another). These quantities are known as scalars and
are said to be Lorentz invariant or simply invariant. 4-vectors are not
scalars.

� If x and y are 4-vectors, then the following object is invariant:

x · y ≡ xT


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 y. (8)
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That is, x · y = x′ · y′. Also, x · x is invariant. If we write this out in
components, we get

t2 − x2 − y2 − z2 = t
′2 − x

′2 − y
′2 − z

′2. (9)

� Another common way of writing arrays and Lorentz dot-products, is
to use Greek indices and the Einstein summation convention. This is
explained in the text and summarized here.

– A contravariant 4-vector is described as xµ which has upper in-
dices. If the components of that vector are (x0, x1, x2, x3) =
(t,x,y,z) then the vector xµ, with lower indices has components
(x0, x1, x2, x3) = (t,-x,-y,-z). The vector xµ is said to be a covari-
ant 4-vector.

– In general, the relationship between an upper index and a lower
index 4-vector is this: If the index is 0, then the components are
the same. If the index is 1, 2 or 3, the components are negatives
of one another.

– If an expression has an index that appears twice, then you sum
over those indices. So, for example, xµxµ = x0x0 + x1x1 + x2x2 +
x3x3 = x0x0 − x1x1 − x2x2 − x3x3 = t2 − x2 − y2 − z2.

� Another very important 4-vector is the 4-momentum defined as the
contravariant 4-vector pµ ≡

(
E, px, py, pz

)
. In this expression, the com-

ponents are also named (E,p). Notice the convention that boldface
letters represent 3-vectors.

� For a single particle of mass m traveling – with respect to the observer
– with velocity v (not to be confused with the velocity of a different
observer), the components obey the relationships E = γm and p =
γmv. By direct computation we can see, for a single particle, that
pµpµ = m2. This relationship is sometimes known as the mass shell
or dispersion equation. In components, this equation becomes E2 =
m2 + p2. The notation p2 denotes the 3-vector dot product p · p. If
v = 0, then p = 0 and we get E = m, or putting back c, the famous
expression E = mc2. The mass m is sometimes called the rest mass, to
distinguish it from another quantity that is sometimes called ‘mass’.

� Very importantly especially in Feynman diagrams, is the observation
that for a system of particles, the sum of their individual momenta is
also a 4-vector. However, that system-momentum does NOT
obey a single-particle mass-shell or dispersion relation. That’s
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why ‘virtual particles’ in Feynman diagrams aren’t ‘real particles’.
Their momenta represent systems of particles (generally 2 particles).
Despite that, people use the suggestive term invariant mass for pµpµ
even when the ‘system is not on the mass shell’ (i.e. even when the
one-particle dispersion equation isn’t obeyed).

� The following notation is used: ∂µ = ∂
∂xµ

. Similarly, ∂µ = ∂
∂xµ

. The

chain rule can be used to convert between derivatives ∂µ and ∂′µ where

∂′µ = ∂
∂x′µ

. Notice that ∂µ is a lower-index object that transforms
as a covariant vector even though (or more precisely ‘because’) it is
defined as a derivative with respect to components of an upper-index
(contravariant) vector.

� Regarding notation p∗ explained at the bottom of page 38: You may
need this later in the text. However, I’ve never encountered that nota-
tion!

3.1 Chapter 2.2.3 – Mandelstam variables

THIS MAY BE SOMETHING NEW WHICH YOU HAVEN’T
ENCOUNTERED BEFORE. Recall that we try to make calculations
using invariant quantities, rather than components of 4-vectors. In the spe-
cific scattering case of 2 ingoing particles colliding and becoming 2 outgoing
particles there is a convenient set of 3 invariant quantities that character-
ize the four separate 4-momenta appearing in the scattering problem. see
Figure 2.2.

� In the diagrams of Figure 2.2, the incoming particles are shown (with
arrows) on the left and the outgoing particles are shown (with arrows)
on the right. Their 4-momenta are labelled respectively p1, p2, p3, p4.
Don’t get confused into thinking the subscripts refer to components.
Each pi is a 4-vector.

� One rule of Feynman diagrams, that I mentioned in last time’s notes, is
that 4-momentum is conserved at each vertex. We implement that by
assigning a value to the quantity q that appears in the diagrams. For
example, in the first diagram, the virtual particle (the squiggly line con-
nected at both ends) is connected on the left to a vertex which has in-
coming momenta p1 and p2. By momentum conservation we then know
that q = p1 + p2. In component form this looks like (q0, q1, q2, q3) =
(p0

1 + p0
2, p

1
1 + p1

2, p
2
1 + p2

2, p
3
1 + p3

2). Thomson then writes the p com-
ponents in terms of the single-particle energies and momenta. In the
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center-of-mass frame, the components pi1 + pi2 = 0 for i = 1, ..., 3 so
q = (E∗1 + E∗2, 0, 0, 0).

� I also mentioned somewhere, that in momentum-space, Feynman dia-
grams contribute a term in the scattering amplitude which is propor-
tional to 1

q2−m2+iε
1 where the mass m characterizes the particle/field

representing the line labeled by q. Remember, this is a virtual parti-
cle, not on the mass shell, so it doesn’t obey the relationship q2 = m2

(otherwise the term would blow up). In the first diagram, q = p1 + p2,
and therefore, based on the definition in the text of the Mandelstam
variable s, we see that s = q2. So the Mandelstam variable s is what
appears in the Feynman term for that diagram, i.e., 1

s−m2 . 2

� The value of q in the second diagram is ambiguous (in point of fact, a
similar ambiguity exists in the first diagram but it was easier to ignore
it). For the top vertex, you could imagine that the conservation of
momentum would be achieved by setting p1 + q = p3, which is how you
would think of things if the virtual particle was going from the past
to the future – thus acting like an incoming virtual particle. But you
could also write p1 = q + p3 which is how you would think of things
if the virtual particle was regarded as an outgoing particle. There’s
no way to disambiguate that, but it doesn’t matter. In either case,
q2 = (p1 − p3)2 which, you can see from the book, is the same as the
Mandelstam variable t. The Feynman diagram contributes 1

t−m2 . Once
you choose the sign of q in a diagram, you need to stick with it, so
at the other vertex you’ll have no choice (if it’s incoming at the top
vertex, it will be outgoing at the bottom vertex).

� The first two diagrams are known as s-channel and t-channel diagrams,
after the term appearing in the Feynman amplitude. There is also a
u-channel diagram (see the definition of the Mandelstam variable u). 3

1I’ll usually omit the ε but in cases where q2 = m2, it’s useful to remember that the iε
keeps the expression from diverging. In practice, the expression (known as the Feynman
propagator) occurs in complex-valued integrals and controls the kinds of complex contours
that can be used for evaluating those integrals

2You might wonder what would happen if the virtual particle’s mass just happened to
be equal

√
s. That’s a bit subtle and requires a few modifications (maybe you recall an iε

term from a long time ago?). But often, the resultant scattering amplitudes – while not
infinite in the case that

√
s = m – have a peak at that value of s. This is one of the ways

new particles are discovered.
3In Figure 2.2, the caption says this only applies when there are identical particles. I

don’t think that’s true. The question to address is whether all of the vertices are ‘legal’
(by which we mean non-zero). Depending on what particles are being shown, the virtual
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4 Chapters 2.3.1 and 2.3.2 – The Schrodinger

equation and probabilities

Chapter 2.3.1 should be a review for you, but worth reading to make sure
you remember the details. Like most authors, Thomson attempts to motivate
quantum mechanics. I’ve never found such motivations to be very compelling.
There’s a few items maybe worth highlighting.

� In general, a wavefunction ψ(x, t) can have any shape at time t = 0.
The only reason we concentrate on plane waves, is that any function
can be written as a ‘sum’ of plane waves – i.e., a Fourier transform.

� If we know that, at t = 0, the wave is of the form eip·x, then its behavior
at other times is determined by the solution of the Schrodinger equation
to be

ψ(x, t) = Nei[p·x−Et] (10)

� Since ψ is to be interpreted as a probability amplitude, and there is
a total probability 1, of finding the particle somewhere, then for each
time t ∫

d3xρ(x, t) = 1 (11)

where the probability density ρ is defined as ρ(x, t) = ψ∗(x, t)ψ(x, t).

If we substitute a plane wave in this equation, we’ll get∫
d3xN2 =∞ 6= 1. (12)

so in practice we resolve this by limiting the particles to live in a very
large box of volume V, in which case we end up showing that N2 = 1/V .
Alternatively, the plane wave is regarded as distribution, used only in
the context of a Fourier transform of, for example, a wave packet.
There are various reasonable ways to put all this on a firm mathe-
matical footing. For example, see the note by Mahendra Mallick on
plane wave normalization https://billcelmaster.com/wp-content/

uploads/2021/11/PlaneWave_in_QM_v2.pdf.

My impression is that Thomson treats the normalization con-
stant differently than most authors, and claims it should be

particle might be a W -boson, which changes flavors. In that case, I don’t believe there’d
be anything wrong with the u-channel diagram even if the vertex p1, p4, q connects the
particle whose momentum is p1 with a different particle (flavor-changed) of momentum
p4.
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interpreted as a number density. I’m not sure where Thomson
will go with this.

� Thomson uses ‘the Schrodinger picture’ – at least in this part of the
text. In that formalism, the wavefunctions are time-dependent but the
operators are time-independent. Field theorists use the ‘Heisenberg’
picture where wavefunctions are time-independent and operators are
time-independent. The two formalisms are equivalent.

� In Thomson’s Schrodinger equation he introduces the operator V̂ . Al-
though in equation (2.19) this preserves the notion that V̂ is an abstract
operator, acting on an abstract wavefunction, I think this is unneces-
sarily abstract for this point in the text. If we treat the wavefunction
as a function of coordinate-space, then a normal non-relativistic poten-
tial – which is already in the form V (x) – acts on the wavefunction as
V (x)ψ(x, t) and nothing is to be gained by using the hat notation on
the very bottom of page 41.

� In case you don’t remember notation, ∇ ≡ (∂x, ∂y, ∂z).
4

In section 2.3.2, Thomson goes into extra detail on the probability in-
terpretation of the wave-function and, in particular, the notion of a current
density (harder to interpret in the Heisenberg picture). This section is some-
what motivational for interpreting scattering amplitudes.

Although the particle has to be somewhere in space, and therefore its
total probability is 1, its probability in a given volume varies with time so
there’s a ‘flow’. This is a familiar situation in descriptions of fluids and is
generally described by a continuity equation. Here, the continuity equation
is

∇ · j +
∂ρ

∂t
= 0, (13)

where

j =
1

2im
(ψ∗∇ψ − ψ∇ψ∗). (14)

The continuity equation can be proven by using the Schrodinger equation,
as is shown in the text.

� Using the divergence theorem, the vector j, is interpreted as a flux
describing the flow of probability-density through a surface.

4Incidentally, when we are doing nonrelativistic mechanics, it doesn’t matter if indices
are lower or upper.

8



� For a plane wave, j = N2v. Note that Thomson puts absolute values
around ‘N’, but the usual convention is to take N to be a positive real
number.
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