Clarification on Fermi's Golden Rule

Mahendra Mallick Dec. 14, 2021

1 Fermi's Golden Rule

Reference

Eisberg, Robert, and Robert Resnick, *Quantum physics of atoms, molecules, solids, nuclei, and particles*, John Wiley, Second Edition, 1985.

Appendix K: TIME-DEPENDENT PERTURBATION THEORY, pp. K-1-- K-5 gives a clear description.

On p. K-4 it clearly states:

"... the number of final quantum states dN_f per energy interval dE_f is the density of final states

$$\rho_f = dN_f / dE_f.$$

I have used our notation convention from Thomson's book for convenience.

Key Steps

Given that the particle was in the state $\phi_i(\mathbf{x})$ at time t = 0, we have

$$c_{f}(T) = \frac{-1}{(E_{f} - E_{i})} H_{fi}' \left[e^{i(E_{f} - E_{i})T/\hbar} - 1 \right]$$

$$= \frac{-1}{(E_{f} - E_{i})} T_{fi} \left[e^{i(E_{f} - E_{i})T/\hbar} - 1 \right].$$
(1-1)

Remark: I didn't use Thomson's (2-45), since this can be easily integrated. There is no need to consider the double integral after (2-45).

Then the probability for a transition to the state $\phi_f(\mathbf{x})$ at time t = T is given by

$$T_{fi} \coloneqq c_f^*(T)c_f(T). \tag{1-2}$$

We can show that

$$T_{fi} \coloneqq c_f^*(T)c_f(T) = \frac{1}{\hbar^2} |T_{fi}|^2 \frac{\sin^2(\beta_{fi}T)}{\beta_{fi}^2}, \qquad (1-3)$$

~

where

$$\beta_{fi} = (E_f - E_i) / 2\hbar. \tag{1-4}$$

From Eisberg & Resnick: The perturbation $H'(\mathbf{x},t)$ has the effect of mixing in contributions from other states over a whole range of the quantum number f. However, we see that the most important contributions come from those f which correspond to eigenvalues E_f lying within a range centered about E_i and of width ΔE , where

$$\Delta E \sim 2\pi\hbar/T.$$
 (1-5)

The transition probability P_i from the initial state $\phi_i(\mathbf{x})$ to all other states at T is defined as

$$P_i \coloneqq \sum_{\substack{f \\ f \neq i}} c_f^*(T) c_f(T).$$
(1-6)

From Eisberg & Resnick: Important: To evaluate it, we assume that there are a large number of closely spaced final quantum states in the range ΔE ; the number of final quantum states dN_f per energy interval dE_f is the density of final states $\rho_f = dN_f / dE_f$. That is

$$P_i \simeq \int_{-\infty}^{\infty} c_f^*(T) c_f(T) dN_f = \int_{-\infty}^{\infty} c_f^*(T) c_f(T) \frac{dN_f}{dE_f} dE_f, \qquad (1-7)$$

$$P_{i} = \int_{-\infty}^{\infty} c_{f}^{*}(T) c_{f}(T) \rho_{f}(E_{f}) dE_{f}.$$
(1-8)

Substitution of (1-3) and (1-4) in (1-8) gives

$$P_{i} \simeq \frac{1}{\hbar^{2}} \int_{-\infty}^{\infty} \left| T_{fi} \right|^{2} \frac{\sin^{2} \left(\left[(E_{f} - E_{i}) / 2\hbar \right] T \right)}{\left[(E_{f} - E_{i}) / 2\hbar \right]^{2}} \rho_{f}(E_{f}) dE_{f}.$$
(1-9)

If we assume that the matrix element T_{fi} and the density of final states ρ_f are both slowly varying functions of E_f in the range ΔE , then we get

$$P_i \simeq \frac{2\pi}{\hbar} \left| T_{fi}(\overline{E}_f) \right|^2 \rho_f(\overline{E}_f) T.$$
(1-10)

Thus, the transition probability is proportional to T, as expected. The transition rate R_i is define by

$$R_i \coloneqq \frac{dP_i}{dT}.$$
(1-11)

Hence the transition rate is given by

$$R_{i} \simeq \frac{2\pi}{\hbar} \left| T_{fi}(\overline{E}_{f}) \right|^{2} \rho_{f}(\overline{E}_{f}), \qquad (1-12)$$

where \overline{E}_f is the average energy in the interval ΔE . We note from (1-12) that the transition rate is independent of T