Clarification on Fermi's Golden Rule

Mahendra Mallick

Dec. 14, 2021

1 Fermi's Golden Rule

Reference

Eisberg, Robert, and Robert Resnick, *Quantum physics of atoms, molecules, solids, nuclei, and particles*, John Wiley, Second Edition, 1985.

Appendix K: TIME-DEPENDENT PERTURBATION THEORY, pp. K-1-- K-5 gives a clear description.

On p. K-4 it clearly states:

"... the number of final quantum states dN_f per energy interval dE_f is the density of final states

$$
\rho_f = dN_f / dE_f.
$$

I have used our notation convention from Thomson's book for convenience.

Key Steps

Given that the particle was in the state $\phi_i(\mathbf{x})$ at time $t = 0$, we have

$$
c_f(T) = \frac{-1}{(E_f - E_i)} H'_{fi} \left[e^{i(E_f - E_i)T/\hbar} - 1 \right]
$$

=
$$
\frac{-1}{(E_f - E_i)} T_{fi} \left[e^{i(E_f - E_i)T/\hbar} - 1 \right].
$$
 (1-1)

Remark: I didn't use Thomson's (2-45), since this can be easily integrated. There is no need to consider the double integral after (2-45).

Then the probability for a transition to the state $\phi_f(\mathbf{x})$ at time $t = T$ is given by

$$
T_{\hat{\beta}} := c_f^*(T)c_f(T). \tag{1-2}
$$

We can show that

$$
T_{\hat{\mu}} := c_f^*(T)c_f(T) = \frac{1}{\hbar^2} \left| T_{\hat{\mu}} \right|^2 \frac{\sin^2(\beta_{\hat{\mu}}T)}{\beta_{\hat{\mu}}^2},
$$
\n(1-3)

where

$$
\beta_{\hat{H}} = (E_f - E_i)/2\hbar. \tag{1-4}
$$

From Eisberg & Resnick: The perturbation $H'(\mathbf{x},t)$ has the effect of mixing in contributions from other states over a whole range of the quantum number *f*. However, we see that the most important contributions come from those f which correspond to eigenvalues E_f lying within a range centered about E_i and of width ΔE , where

$$
\Delta E \sim 2\pi \hbar / T. \tag{1-5}
$$

The **transition probability** P_i from the initial state $\phi_i(\mathbf{x})$ to all other states at *T* is defined as

$$
P_i := \sum_{\substack{f \ f \neq i}} c_f^*(T)c_f(T). \tag{1-6}
$$

From Eisberg & Resnick**: Important**: To evaluate it, we assume that there are a large number of closely spaced final quantum states in the range ΔE ; the number of final quantum states dN_f per energy interval dE_f is the density of final states $\rho_f = dN_f / dE_f$. That is

$$
P_{i} \approx \int_{-\infty}^{\infty} c_{f}^{*}(T)c_{f}(T)dN_{f} = \int_{-\infty}^{\infty} c_{f}^{*}(T)c_{f}(T)\frac{dN_{f}}{dE_{f}}dE_{f},
$$
\n(1-7)

$$
P_i = \int_{-\infty}^{\infty} c_f^*(T)c_f(T)\,\rho_f(E_f) dE_f.
$$
 (1-8)

Substitution of $(1-3)$ and $(1-4)$ in $(1-8)$ gives

(1-9)
\n
$$
P_i \approx \frac{1}{\hbar^2} \int_{-\infty}^{\infty} \left| T_{fi} \right|^2 \frac{\sin^2([(E_f - E_i) / 2\hbar]T)}{[(E_f - E_i) / 2\hbar]^2} \rho_f(E_f) dE_f.
$$

If we assume that the matrix element T_{f_i} and the density of final states ρ_f are both slowly varying functions of E_f in the range ΔE , then we get

$$
P_i \simeq \frac{2\pi}{\hbar} \left| T_{fi} (\overline{E}_f) \right|^2 \rho_f (\overline{E}_f) T. \tag{1-10}
$$

Thus, the transition probability is proportional to *T*, as expected. The **transition rate** R_i is define by

$$
R_i := \frac{dP_i}{dT}.\tag{1-11}
$$

Hence the **transition rate** is given by

$$
R_i \simeq \frac{2\pi}{\hbar} \left| T_{fi} (\overline{E}_f) \right|^2 \rho_f (\overline{E}_f), \tag{1-12}
$$

where \overline{E}_f is the average energy in the interval ΔE . We note from (1-12) that the transition rate is independent of *T*