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1 Revision History

� January 4: Laid out basic issues. Couldn’t find anything wrong with
the notion of a Klein-Gordon wavefunction, provided energy> 0. Couldn’t
construct a good reason why this condition couldn’t be imposed by fiat.

� January 5: Found that negative energy was required in order to avoid
propagation outside the light cone. Leads to different speculations
about probability current. Material was rewritten to accommodate all
this.

� January 5.5: Perhaps integrals over momentum should be modified
for Lorentz-invariance. That has consequences for the interpretation
of the position-eigenstates and in particular, they aren’t a complete
orthonormal set. Material has been added to consider this.

2 Overview

During our January 3 meeting, two issues were raised that I more or less
swept under the rug. After the meeting, I realized I’ve been sweeping these
under the rug forever, and that it was time for me to look under the rug.
Unfortunately, I haven’t come to any completely satisfactory conclusions but
I thought it would be worth laying out the things that are bothering me.
I’m hoping someone will look into this either by staring the problems into
submission or by looking online for someone who has a relevant treatment of
the subject. For now, I don’t know whether my issues are trivial or deep. I
don’t think they are mathematically very challenging. Rather, I believe my
issues are interpretive.
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The two subject areas are:

� The ‘time-energy’ Heisenberg uncertainty principle

� The appropriate interpretation of wave functions, probability densities
and currents for electrons and other particles arising from field theory

Although the topics are separate from one another, I’ll discuss the second
topic by building on some of my notes for the first topic.

Any and all comments are welcome!

3 Time-energy uncertainty principle

Heisenberg’s uncertainty principle was introduced in the context of non-
relativistic QM. For simplicity, imagine we are in one spacial dimension.

� The statement of the uncertainty principle is this: if we have a way of
measuring a particle’s momentum and if we also have a way of mea-
suring the particle’s position, then it’s not possible to simultaneously
measure both with complete accuracy. In particular,

∆x∆p ≥ ~
2

(1)

where ∆ denotes the variance measured when repeating the experi-
ments (technically when repeating them an infinite number of times).

� The derivation of this inequality arises from the fact that in non-
relativistic QM, the position of a particle is related to its momentum
via a Fourier transform. If the amplitude for a particle to have momen-
tum p is ψ̃(p) and if the amplitude for that particle to have position x
is ψ(x), then according to non-relativistic QM (by the way, I’m setting
~ to 1).

ψ(x) =

∫
dp

2π
eipxψ̃(p). (2)

Then as Matthew mentioned, there is a fact about Fourier transforms
where the x-variance times the p-variance is bounded from below by a
constant (I didn’t do the math but feel free. I’m hoping you’ll see that
the constant is 1

2
).

� Furthermore, all of this is cast in algebraic form by defining the oper-
ators x̂ and p̂ = −i∂x, then applying the commutation relations etc.
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� In non-relativistic QM, time is regarded as a parameter and not an
operator. However, the energy is regarded as an operator, generally
known as H or Ĥ, the Hamiltonian operator.

� Yesterday, the following natural question came up. We know from the
theory of relativity, that time and position should be different per-
spectives on the same thing. Similarly for energy and momentum. So
wouldn’t it be natural, in anticipation of a relativistic theory, that there
should be an uncertainty principle between time and energy?

� At first blush, the answer is “no” since there is no operator correspond-
ing to time. Time is simply a parameter in the non-relativistic theory.

� HOWEVER, time and energy are related, in non-relativistic QM (and
even in relativistic QM) by a Fourier transform operation. The argu-
ment goes like this: Any (free-particle) state can be decomposed into
a superposition of energy basis states

ψ(t) =

∫
ω(E)e−iEtdE, (3)

For simplicity, I’ve assumed we’re only looking at position x = 0 so
I’ve suppressed the x-variable. e−iEt is the free-particle eigenstate with
eigen-energy E and ω(E) is the coefficient in the superposition. (Also,
for simplicity I’ll assume non-degenerate energy states and if you don’t
know what that means, don’t worry about it.)

� Just as before, from the Fourier transform theory, the variance of t
multiplied by the variance of E is bounded from below by a constant
(proportional to ~).

� As an example, imagine ω(E) = constant. Then the integral is pro-
portional to a delta function around 0. So if ω has an infinite variance
then the wave function spikes at time = 0. (There’s nothing at x = 0
before time 0 and nothing after). Conversely, if ω is narrowly peaked
at some energy E0, then the wavefunction will be almost a plane wave
of the form e−iE0t – which has infinite variance.

So we see there’s a time-energy uncertainty principle despite the fact that
there isn’t a time operator and therefore no ‘time-Hamiltonian’ commutation
relationship.

THE QUESTIONS WHICH PUZZLE ME: In non-relativistic the-
ory, what is the structural similarity between position and time that leads to
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the time-energy uncertainty principle? Could we invent a time operator and
define it in a similar way to the position operator as t̂|ψ, t〉 = t|ψ, t〉? If not,
why not? If so, why doesn’t anyone do that? Could the existence of a time-
energy uncertainty principle lead pre-relativistic physicists to suspect that
time and position should be on equal footing? (Mind you, all QM physicists
after Planck were ‘post-relativistic’.)

In case you are wondering: Relativistic QM didn’t evolve by making time
an operator on the same footing as position. Instead it made position a
parameter on the same footing as time. So traditionally, one doesn’t speak
of position operators in relativistic QM. This may be especially relevant
to the next section. Only recently (in the past 30-40 years) has this all
been re-visited. In string theory, position and time become operators and the
‘parameters’ are (unphysical) ways of identifying particular combinations of
position and space as potential values of ‘events’.

4 Wave functions in Quantum Field Theory

The point of view I’ll adopt here is that the only relativistic QM we study,
is QFT. (As I mentioned above, another variant of relativistic QM is string
theory – which can be formulated as a QFT but differently than we’ve been
doing.) In particular, even though we treat the Dirac equation as a relativistic
version of the Schrodinger equation, the proper relativistic theory of the
electron is QFT.

One immediate consequence of all this, is that position is treated as a
parameter, just as time was treated in the non-relativistic case. QFT
(and its manifestation in the Dirac theory of the electron) does
not discuss position operators! I’ll return to this point, but first must
point out that without position operators it’s questionable what position
wavefunctions should mean in relativistic QM.

As I’ll discuss, we can still define a quantity like ψ(x) but there might
be issues with its interpretation. On the other hand, in relativistic QM, it is
perfectly reasonable to discuss quantities like ψ(p) and to interpret these as
the probability amplitude that the state is measured to have a momentum of
p. That’s because momenta, in QFT, are observables (operators representing
measurement).

This discussion is a bit reminiscent of the previous section where I raised
the question of how the energy – an operator – should be related to time,
which is a parameter and not an operator. With all this as a preface, here
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are a series of points to think about.

� For the remainder of this discussion, consider the relativistic description
of a massive scalar particle like a pion. The particle has no spin so is
completely characterized by its 3-momentum so is depicted |p〉.

� Furthermore, since we are dealing with a relativistic theory, the energy,
E is related to the momentum by the equation

E =
√
p2 +m2 (4)

� In general, the Hilbert space is a multi-particle space (a tensor product
of one-particle states) but we’ll focus on the single-particle states. The
states |p〉 would form a complete set if the particle-momentum was
completely sufficient to determine all properties of the particle includ-
ing how it propagates in time. I’ll begin the analysis by assuming a
complete set but be warned that I’ll run into a critical problem
which will force me to introduce another set of momentum
states distinguished by a quantity having to do with propaga-
tion properties.

� CAVEAT EMPTOR: In what follows, I’m going to be very
careless about normalization and factors of 2π. The qualitative
results won’t depend on that carelessness.

� For the time being, continue to assume that the states |p〉 form a
complete set. That is, any single-particle state can be written as a
superposition,

|ψ〉 =

∫
ψ(p)|p〉d3p, (5)

where the complex coefficients ψ(p) are called “the p-representation of
|ψ〉” or more simply “the momentum wavefunction of |ψ〉”.

� Now define a new set of states as follows:

|x〉 =

∫
d3peip·x|p〉. (6)

These form a complete set of states (again, that assumes the momen-
tum states were a complete set) and it’s tempting to call them “position
eigenstates”. However, that would be appropriate only if we can iden-
tify a position observable. We’ll return to this point shortly.
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� Construct the inner product of |ψ〉 and |x〉 as

〈x|ψ〉 =

∫
d3p′d3pe−ip

′·xψ(p)〈p′|p〉

=

∫
d3p′d3pe−ip

′·xψ(p)δ(p′ − p)

=

∫
d3pe−ip·xψ(p)

(7)

The RHS is just the Fourier transform of ψ(p) so it would be natural
to call this the x-wavefunction ψ(x). 1

� THE KEY QUESTION IS: “what is the significance of 〈x|ψ〉?”
Sure, we can write this as ψ(x), but what does it mean? In non-
relativistic QM, that quantity would be interpreted as the probability
amplitude that the state |ψ〉 is measured to have a position x. But
in relativistic QM (field theory), there may be a question as to how
we measure position. I CAN’T COME UP WITH ANY OB-
VIOUS REASON WHY IT SHOOULD BE MEANINGLESS
TO MEASURE POSITION IN A RELATIVISTIC THEORY
but all questions of measurement need to be considered in terms of the
interactions required, and Lorentz-invariance imposes some very strict
constraints on what kinds of interactions, and therefore measurements,
we can talk about.

� In the meantime, let’s see how we could construct an appropriate ob-
servable. The point is that we can define any (self-adjoint) linear op-
erator we want (and therefore an observable) by specifying some ap-
propriate action on the basis vectors, in this case the vectors |x〉. Let’s
define the operator Q̂z by

Q̂z|x〉 = z|x〉. (8)

where as usual, z is the third component of the vector x. This operator
Q̂z is diagonal with real values, and is therefore self-adjoint. It appears
to be a position operator (measuring the z-component of the state).

� So now we have an operator – in fact, the only operator that would
be a candidate for a position operator. But how do we know that it’s
appropriate to identify this operator Q̂z with a measurement of the

1This is an abuse of notation. Different symbols should be used, for example ψ̃ and ψ
to distinguish between the function and its Fourier transform.
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z-coordinate of the state? As an example of how we’d answer this,
consider how we could measure the position of a charged pion. We
could aim a proton at it and then, because the pion is charged, its
scattering behavior should depend on its location and its charge. So
in an indirect way, the proton is involved in the measurement of the
pion’s position. If Q̂z is a position operator (for the pion) then it must
have some non-trivial relationship to the proton and in particular, to
the charge of the proton.

� I don’t think any of the above is especially helpful in deciding whether
it’s reasonable to call Q̂z a position operator. But I believe that in the
early days of non-relativistic QM, there were considerations of equal
difficulty in coming to our current understanding of position observables
etc.

� So, setting aside matters of interpretation, it appears we’ve found a
way to define an x-wavefunction just like we did in nonrelativistic QM.
The only apparent difference between relativistic and non-relativistic
QM, is that in relativistic QM, we have E =

√
p2 +m2.

� If we also insist that the states should evolve as

|ψ, t〉 = e−iĤt|ψ, 0〉

= e−i
√
p̂2+m2t|ψ, 0〉

(9)

then when we expand ψ as in eq. (5), we get

|ψ, t〉 =

∫
d3pe−i

√
p2+m2tψ(p)|p〉. (10)

Once all this has been stipulated, we can easily show that(
∂µ∂µ +m2

)
ψ(x, t) = 0. (11)

In other words, the x-wavefunction satisfies the Klein-Gordon equation.

� Before turning to Thomson’s treatment of this subject, consider the
question of outside-the-light-cone-propagation which is worked out by
Lancaster in his section 8.3.

– Lancaster asks the question “if a particle starts off at position x =
0 and then propagates for a time t, then what is its amplitude for
being observed at a distance further than ct (i.e., that it traveled
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faster than the speed of light)?” I very temporarily introduced c
instead of setting it to 1, so that it’s clearer this describes faster-
than-light travel. Now I’ll return to natural units.

– Lancaster sets out to compute

A = 〈x|e−iĤt|x = 0〉, (12)

for the case |x| > t (outside the light-cone).

– I’ll leave it to you to follow the derivation, in particular the ma-
nipulations of Example 8.1. But the bottom line is that if we
set E = +

√
p2 +m2, then A is non-zero outside the light cone.

This is unacceptable since we can’t allow the particle to have any
amplitude for traveling faster than the speed of light.2

� What if the momentum eigenstates aren’t a complete set? Let’s hy-
pothesize that momentum eigenstates come in two types |p,+〉 and
|p,−〉. The two types are distinguished by the value of the Hamilto-
nian acting on those states:

Ĥ|p,+〉 = +
√
p2 +m2|p,+〉

Ĥ|p,−〉 = −
√
p2 +m2|p,−〉.

(13)

In other words, the two types of momentum eigenstates correspond to
positive and negative energies.

� Correspondingly, we’ll need to extend our definition of |x〉. I tried
various things (remember, my goal is to get rid of the faster-than-light
propagation). Define

|x, 1〉 =

∫
d3peip·x (|p,+〉+ i|p,−〉)

|x, 2〉 =

∫
d3peip·x (|p,+〉 − i|p,−〉)

(14)

� Both of these states are reasonable candidates for a position eigenstate
with eigenvalue x. A new operator will need to be used to distinguish
the two states but for now, we’ll ignore that.

2It’s a bit interesting to imagine how physicists from the 1920’s would have reacted to
this. After all, the theory of relativity was quite new and it must have occurred to them
that in the quantum world, there might be violations of one sort and the other. As far
as I know, the argument about propagation came later than the discoveries of Dirac and
others.
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� Consider the propagation question, now framed as the value of the
amplitude

B = 〈x, 1|e−iĤt|x = 0, 1〉, (15)

for |x| > t.

� To proceed, I’ll need to dive into Lancaster’s derivation of pages 75 and
76.

– First insert a complete set of states (“resolution of the identity”),
then apply the propagation operator to the momentum states,
then expand 〈x, 1| as above, and finally use the orthonormality of
the p-states.

B = 〈x, 1|e−iĤt|x = 0, 1〉

=

∫
d3p
(
〈x, 1|e−iĤt|p,+〉+ i〈x, 1|e−iĤt|p,−〉

)
=

∫
d3p
(
〈x, 1|p,+〉e−iE(p) + i〈x, 1|p,−〉e+iE(p)

)
=

∫
d3pd3p′e−ip

′·x[〈p′,+|p,+〉e−iE(p) − i〈p′,−|p,+〉e−iE(p)+

i〈p′,+|p,−〉e+iE(p) + 〈p′,−|p,−〉e+iE(p)]

=

∫
d3pd3p′e−ip

′·xδ(p′ − p)[e−iE(p) + e+iE(p)]

=

∫
d3pe−ip·x[e−iE(p) + e+iE(p)],

(16)
where E(p) =

√
p2 +m2.

– Up to a factor of (2π)−3 this looks similar to Lancaster eq. (8.17)
except that we are adding together one term with a positive energy
and the other with a negative energy.

– We can therefore follow the logic in Lancaster Example 8.1 in
order to do the integral. This is a contour integral and requires an
assessment of what contours to use. Lancaster explains his choice
of contour by showing that in the upper semicircle, the factors die
off exponentially. It turns out that precisely the same arguments
show that even if the energy were negative, the factors die off on
the upper semicircle. Therefore the only change between positive
and negative energy is in the sign of t-exponents in the first line
of eq.(8.19). That, copying Lancaster, leads to the conclusion –
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up to constant factors

B =

∫
d3pe−ip·x[e−iE(p) + e+iE(p)]

=
−i

(2π)3|x|

∫ +∞

m

d(iz)ize−z|x|
(

[et
√
z2−m2 − e−t

√
z2−m2

] + [e−t
√
z2−m2 − et

√
z2−m2

]
)

= 0.
(17)

� So now we have the desired result. There is no propagation outside the
light cone. It’s easy to see that we’d get the same result if we replaced
|x, 1〉 by |x, 2〉.

� UNFORTUNATELY, WE GET A NONZERO AMPLITUDE
FOR 〈x, 1|e−iĤt|x = 0, 2〉. That is, if we start with particle of type 2,
then a portion of it can propagate faster than the speed of light and
turn into a particle of type 1. (The same is true if we reverse 1 and 2.)

� Let’s summarize. We started with a one-particle scalar theory with
the ansatz that a complete set of states could be completely charac-
terized by the value of the particle’s 3-momentum. Furthermore, and
in accordance with the fact that basis states are uniquely defined by
their three-momentum we proposed that this theory only permitted
positive energy eigenvalues. We then constructed another complete set
of states that are candidates for position eigenstates. If we accept that
interpretation, then we are led to the fact that there is a non-zero am-
plitude for those particles to propagate faster than the speed of light.
This led us to propose that perhaps there is a degeneracy amongst
momentum eigenstates. For each value of the 3-momentum, we allow
the Hamiltonian operator to take on both a positive and a negative
energy. We constructed a set of ‘position’ basis states. Once again
there is a degeneracy. For every value of x there are two states that
we call type-1 and type-2. If we examine the propagation of type-1
states into type-1 states, or type-2 states into type-2 states, the ampli-
tude is zero for faster-than-light travel. That seems almost satisfactory.
Unfortunately, there is a non-zero amplitude for faster-than-light mix-
ing. So far, I have nothing to add to that (and no explanation apart
from skepticism that there is really a relativistic version of a position
operator).

� Now that we have allowed negative energies, we can meet up with
Thomson’s treatment of the Klein-Gordon equation. We have an x-
wavefunction that satisfies the Klein-Gordon equation (this is true for
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both type-1 and type-2 particles and therefore for all linear combina-
tions of them) so we can apply Thomson’s analysis of the Klein-Gordon
probability-current. For a plane wave Thomson obtains

ρ = kE

j = kp
(18)

where k is a positive constant. But now that the energy E can be
negative, this leads to a negative value of the probability density ρ.
That’s a problem!

There are a few other odds and ends related to this topic.

� I arrived at the existence of negative-energy states by showing that
there is an issue with faster-than-light propagation. Thomson and oth-
ers point out that negative-energy states are solutions of the Klein-
Gordon equation, so the theory should allow them. Wikipedia (https:
//en.wikipedia.org/wiki/Dirac_equation) elaborates slightly on this,
posing the issue in terms of an initial-value problem.

� The Wikipedia article also mentions that the second-order time deriva-
tive spoils the interpretation of ψ(x) as a probability amplitude. This
is, of course, the thrust of Thomson, Lancaster and others. In my notes
above, I’ve puzzled over the question of how to interpret ψ(x) if it isn’t
a probability amplitude – and whether that has to do with the meaning
of a position observable.

� Everyone seems to agree that the right way out of this conundrum is
to drop the non-relativistic notion of position wavefunctions as ampli-
tudes, and instead introduce fields dependent on position. It’s really
a pretty dramatic re-casting of QM. What’s surprising is that Heisen-
berg’s algebraic formulation of QM, as well as the correspondence prin-
ciple between Lagrangian variables and their conjugate momenta, man-
aged to survive the transition from non-relativistic to relativistic QM.

� What is also surprising and fortuitous, is that the Dirac equation –
which applies only to spin-1

2
particles – allows a Schrodinger-like inter-

pretation of probability currents. As far as I can tell, this isn’t a general
feature of relativistic field theories, as we can see from the examination
of the scalar particle. I found an article online which appears to go into
much more depth on all this. The article is Probability in relativistic
quantum mechanics and foliation of spacetime by Nicolic.
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� I’ve looked at one more reference that is probably relevant. The pa-
per is from 1963 and is quite significant: “Relativistic Invariance and
Hamiltonian Theories of Interacting Particles” by Currie, Jordan and
Sudarshan in Reviews of Modern Physics 35,Number 2 pp 350-375.
The authors were setting out to describe a theory modelled on non-
relativistic QM rather than field theory, but in which various observ-
ables are required to satisfy the Lorentz algebra. Their conclusion was
surprising. On very general grounds, they showed that it wasn’t possi-
ble to construct a theory of interacting particles. The best that could
be done was to construct a theory of free particles. This paper prob-
ably would have received more notice, except that around 1963, an
increasing number of physicists had become persuaded that field the-
ory was the appropriate way to deal with relativistic QM, so they were
no longer especially interested in the non-field-theoretic methods (such
as what was being proposed in this paper). I don’t think there is a
direct connection between the Currie et al. paper, and the notes above
concerning probability densities. However, there may be an indirect
connection since the authors concern themselves at great length with
the question of how to define position operators and, once defined, how
these interplay with the geometry-generators (such as momentum) of
the theory.

5 Connection with field theory

Up to now, I’ve stayed clear of the QFT formalism. But with a plausible
modification of the previous analysis, I think there’s an interesting connection
to be made.

I’ll jump to the standard expansion of a Klein-Gordon field in terms of
creation and annihilation operators.

φ(t,x) =

∫
d3p

(2π)3
1

2E(p)

(
ape

−i(E(p)t−p·x) + a†pe
i(E(p)t−p·x)) . (19)

Remember, E(p) is defined to be E(p) =
√
p2 +m2. Now let’s apply that to

the vacuum. The creation operator creates a state |p〉 and the annihilation
operator term is 0. So

φ(t,x)|0〉 =

∫
d3p

(2π)3
1

2E(p)
ei(E(p)t−p·x)|p〉. (20)

The integral can be shown to be Lorentz invariant by noting that for any
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function f , ∫
d3p√

2E(|p|)
f(E(|p|),p) =

∫
d4pf(p)δ(p2 −m2) (21)

where on the right, p refers to the 4-vector. So, for example, on the right we
have p2 = p20 − |p|2. If we set t = 0, then eq.(20) becomes

φ(0,x)|0〉 =

∫
d3p

(2π)3
1√

2E(p)
e−ip·x|p〉, (22)

which is similar to eq. (6), but with the integration measure replaced by a
Lorentz-appropriate measure. This suggests that perhaps a better definition
of the state |x〉 would be the left side of the above equation. So, let’s define
a new ‘Lorentz-covariant’ state

|x, t〉L = φ(t,x)|0 > . (23)

This seems to be as valid a candidate for a position-state (or even more valid)
as the previously defined position-state. Then we have

L〈x′, t|x, t〉L = 〈0|φ(t,x′)φ(t,x)|0〉. (24)

We’ve invoked the fact that φ∗ = φ. The right-hand side is called the prop-
agator and is not a position delta-function. So these position-states don’t
form an orthonormal set and thus don’t form an appropriate basis from which
to develop a position-wavefunction that can be interpreted as a probability
amplitude for determining position.

Even so, we can define a quantity ψL(x, t) = L〈x, t|ψ〉 and this ‘feels’ like
it is a local measurement – using the field φ(t,x) – of the state |ψ〉.

It turns out that the field-theoretic causality condition (information can’t
travel faster than the speed of light) is

[φ(x′), φ(x)] = 0 (25)

if the 4-vectors x and x′ are outside one another’s light cones. This follows
from the fact that commuting operators can be measured simultaneously,
and therefore one cannot affect the other. This has the consequence that

Im L〈x′, t′|x, t〉L = 0 (26)

if |x− x′| > |t− t′|.
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