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1 Thomson 4.1 and 4.2: The free electron’s

Hamiltonian

If we want to compute scattering cross-sections (aka transitions) for electron
collisions, we need a Hamiltonian of the form H0 + HI . Thomson Chapter
4 examines the electron Hilbert space and H0, describing free motion of
electrons. The resulting equation of motion is the Dirac equation.

1.1 Thomson 4.1: A wrong guess – the Klein-Gordon
equation

Several things go wrong when we modify Schrodinger’s equation for relativity.
Remember

i
∂ψ

∂t
= − 1

2m

∂2ψ

∂x2
(1)

In a Lorentz-invariant theory, the time-component must behave just like the
space-component. So if we have the second derivative with respect to space,
we must have the second derivative with respect to time.

Remember also, that Schrodinger identified the energy operator as Ê =
i ∂
∂t

and the momentum operator as ˆ̂p = −i∇ . With these identifications,
eq. (1) is equivalent to

Ê =
p̂2

2m
(2)

which is a non-relativistic equation. The corresponding relativistic (and
Lorentz-invariant) equation would be

Ê2 = p̂2 +m2. (3)
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If we now rewrite the operators we get the wave equation

∂2

∂t2
ψ −∇2ψ = −m2ψ (4)

which can be written in tensor notation as(
∂µ∂µ +m2

)
ψ = 0. (5)

This is the Klein-Gordon equation.

1.1.1 Issue 1 – negative energies

A basis of solutions to eq. 5 is

ψp(t,x) = Npe
i(p·x−Et) (6)

where
E = ±

√
p2 +m2 (7)

The problem is that some energy values are arbitrarily negative.
It’s not necessarily obvious this is a problem. For many classical theories,

this kind of thing ultimately leads to instabilities. Dirac and others had that
experience.

1.1.2 Issue 2 – insufficiency of single-particle Hilbert space

The Klein-Gordon equation looks like a simple relativistic extension of the
Schrodinger equation. So we might hope that the wave-function can be
interpreted in a similar way, and that an abstract formulation of a single-
particle wavefunction, is that it is part of a single-particle Hilbert space.

Heisenberg’s uncertainty principle applies (a consequence of Fourier trans-
forms). Namely, ∆p∆x > ~/2. So if the electron were confined to a small
enough space (for example, something like the ‘classical radius’ of the elec-
tron) then its momentum would be so uncertain that there would be a finite
probability that p2 >> m. Since E =

√
p2 +m2, this would mean E >> m

and therefore that enough energy would be available to create multiple elec-
trons.

This has the apparent consequence that a one-particle Hilbert space is
inadequate to describe a system that begins as one particle, since if the
system is sufficiently confined, it could turn into multiple particles.

This is not necessarily a problem. Just because it’s kinematically possible
(i.e., allowed by energy and momentum conservation) for one particle to
transform to many, there needn’t be a process that enables such a transition.
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Still, the kinematic considerations apply to any and all particles, and it would
be surprising if all of them were prohibited from transforming into multiple
particles.

1.1.3 Issue 3 – propagation outside the light cone

This topic is covered in section 8.3 of Lancaster (with details and a nice
illustration). Recall that the exponential of the energy operator – sometimes
known as the Hamiltonian – acts on states by propagating them in time.
Namely,

|ψ(t)〉 = e−iHt|ψ(0)〉 (8)

where H ≡ Ê. Suppose that the particle’s starting state is an eigenstate of
the position operator, with eigenvalue x = 0. What is the probability that
after a time t, the state can be found at position x? In other words, what is
|〈x|e−iHt|0〉|2?

We can compute that by using the basis of eqs. (6) and (7). Lancaster
does this computation. What we discover is that even if the particle is unable
to classically reach position x in time t – owing to the limitation of the speed
of light, in quantum mechanics there is a non-zero probability of finding
the particle at position x.

This particular issue can’t be dismissed by any simple argument.

1.2 A proposal for addressing Klein-Gordon issues

Historically, the first issue – negative energies – was the one that Dirac set
out to address. He was led to a new equation. It still had a negative-energy
problem. So he then tackled that problem, but in the context of the new
equation.

This led to the discovery of positrons, or more generally, antiparticles.
Many textbook treatments follow this history. However, it’s mathematically
unclean and highly limited. Dirac himself resolved issues by inventing quan-
tum field theory. In my opinion, that’s how the subject should be taught to
purists.

Thomson follows the traditional historical approach. Even though it is
on shaky ground from a foundational perspective, the historical approach
makes the Dirac theory a reasonably straightforward generalization of the
non-relativistic Schrodinger theory. So I’ll follow Thomson. First, a bridge
section somewhat parallel to Lancaster’s approach.

To set up the scattering theory, we need to begin with a Hilbert space,
and a free Hamiltonian both of which conspire to address the Klein-Gordon
issues.
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1.2.1 A Hilbert space for electrons and positrons

� A simple non-relativistic electron has spin-1
2
, i.e., two components that

transform amongst one another when we rotate reference frames.

� Dirac predicted that the relativistic theory has four components, inter-
preted as 2 electron spins and 2 positron spins.

� So the Hilbert space has a basis of single-particle states characterized
as

|p, e±, s〉, (9)

where e± takes the value 1 or -1 depending on whether we have a
positron (e+) or electron (e−) ; ‘s’ is 1

2
or −1

2
. The above state is an

eigenstate of the 3-momentum operator p̂k (not yet specified) whose
eigenvalues are pk.

� The Hilbert space also has multi-particle states. For example, a two-
particle state is |p, e±, s,p′, e′±, s′〉 = −|p′, e′±, s′,p, e±, s〉. Notice that
the order matters.

1.2.2 Observables – momentum, energy, position

� Except when absolutely necessary, I’ll suppress the time variable for
states. Just append t if you need it.

� If we defined the Hilbert space in terms of eigenfunctions of momen-
tum (|p, e±, s〉) then the momentum operator is defined as the (vector)
operator which acts on states as

p̂k|p, e±, s〉 = pk|p, e±, s〉. (10)

This is really just a definition. But it’s the starting point for defining
the position operator and position eigenfunctions. First, what about
energy?

� The energy operator Ĥ or Ê is defined by

Ĥ|p, e±, s〉 =
√
p2 +m2|p, e±, s〉. (11)

Notice that the energy eigenvalue is always positive. The Hamiltonian
is also responsible for time evolution (now we need to unsuppress the
time-variable).

|ψ, t〉 = e−iĤt|ψ, 0〉. (12)
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� Next, the question is “what is the position (vector) operator?” I’ll define
that indirectly in terms of the position eigenfunctions |x̂, e±, j〉 where
j ranges from 1 to 4.

〈x, e−, j| =
∑
s

∫
d3p

(2π)3
eip·x〈p, e−, s|(us(p))j

〈x, e+, j| =
∑
s

∫
d3p

(2π)3
eip·x〈p, e+, s|(v∗s(p))j

(13)

and the 4-vectors (known as spinors) are given in Thomson by eqs.
(4.51) and (4.52). For example

u2(p) =
√
E +m


0
1

px−ipy
E+m

− pz
E+m

 (14)

Notice that there are twice as many x-type states as p-type states, so
half of these are linearly dependent on the others.

If you are bothered by this abstract sum of vectors, remember that we
are generally interested in the inner products, representing a probability
amplitude. So, for example,

〈x, e−, j|ψ〉 =
∑
s

∫
d3p

(2π)3
eip·x〈p, e−, s|ψ〉(us(p))j (15)

Now we have a bona fide Fourier transform. The inner product 〈x, e−, j|ψ〉
is the probability amplitude that the state |ψ〉 has a ‘component’ |x, e−, j〉.
What does that mean? It means this. Suppose I have prepared, in some
way, the state |ψ〉. Then I perform a measurement whose outcome
happens to be the state |x, e−, j〉. How do we know that this is the
outcome? In principal, we know because we did a certain set of mea-
surements and observed a certain set of numbers. But it’s nontrivial
to make the connection between certain observations and the resultant
states. This is called “associating an observation/measurement with
an operator on the Hilbert space – often known as an ‘observable’.

� The position operator is then defined as the (vector) operator which
acts on states as

x̂k|x, e±, j〉 = xk|x, e±, j〉. (16)
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� Why is x̂ interpreted as the position operator? Another way of asking
that question is whether there is a position observable (a measurement)
that can be represented as the operator x̂. That leads to asking what
is the ultimate meaning of momentum and position? Momentum is de-
fined in Hamiltonian and Lagrangian mechanics, as the variable ‘con-
jugate’ to position – a member of the cotangent space to configuration
space. In quantum theory, the momentum operator is the differential
translation operator.

Momentum and position operations are related to one another via
Fourier transforms. But beyond that observation, remain some tricky
questions that I don’t understand well enough to comment intelligently
about.

More generally, one could ask why the form of the position eigenfunc-
tions in eq. (13) is so complicated. As in the previous paragraph,
the answer lies in the necessity of having various operators reflect the
Lorentz geometry of the system. In particular, there are relationships
required between the operators for translations and rotations – with
corresponding relationships between operators for 4-momentum (en-
ergy plus 3-momentum) and angular momentum. We haven’t discussed
rotations or angular momentum, but these are responsible for most of
the messiness of spinor theories.

1.2.3 Dirac wavefunctions

Now that we’ve defined the position operator and position eigenfunctions,
we’re ready to look at the relativistic version of the Schrodinger equation.
Remember that in non-relativistic QM, the probability that a state |ψ〉 has
position x is given by |〈x|ψ〉|2 where 〈x| is the eigenfunction of x̂.

In the relativistic theory, there is at least one minor complication. There
are multiple eigenfunctions of x̂, depending on whether we are looking at
an electron or positron, and also depending on some combination of spins.
So we have to be more precise about what measurements we’re making. I
don’t know whether the Dirac wavefunctions resolve the issue, noted in the
Klein-Gordon theory, of particles propagating faster than the speed of light.
This calculation could be done, but I think it’s messy. I have a feeling we
will still have the same problem.

Now let’s see how we resolve the negative-energy issue. Define the prob-
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ability amplitude for the time-evolved electron momentum eigenfunction.

ψp
s (x, t)j = 〈x, e−, j, 0|p, e−, s, t〉

= 〈x, e−, j, 0|e−iĤt|p, e−, s, 0〉

= 〈x, e−, j, 0|e−i
√
p2+m2t|p, e−, s, 0〉

=
1

(2π)3
e−i(Et−p·x)us(p)j

(17)

where E =
√
p2 +m2.

This function, generally known as the Dirac plane-wave solution for elec-
trons, satisfies the (Dirac) equation

(γµp̂µ −m)ψp
s (x, t) = 0, (18)

or in shorthand notation

(/̂p−m)ψp
s (x, t) = 0. (19)

The gamma matrices are given in Thomson and p̂ = −i∇.
Now define the probability amplitude for the time-evolved positron mo-

mentum eigenfunction.

ψ̃∗ps (x, t)j = 〈x, e+, j, 0|p, e−, s, t〉

= 〈x, e−, j, 0|e−iĤt|p, e−, s, 0〉

= 〈x, e−, j, 0|e−i
√
p2+m2t|p, e−, s, 0〉

=
1

(2π)3
e−i(Et−p·x)v∗s(p)j.

(20)

Observe that we defined the conjugate function ψ̃∗ps (x, t) which is also a valid
probability amplitude (the probability is the conjugate-squared).

ψ̃, known as the Dirac plane-wave solution for positrons, satisfies the
(Dirac) equation

(/̂p+m) ψ̃s
p
(x, t) = 0. (21)

Note that ψ̃p
s (x, t) = 1

(2π)3
ei(Et−p·x)vs(p).

WE SEE THAT THE POSITRON PLANE-WAVE SOLUTION
HAS ‘NEGATIVE ENERGY’. THAT IS, THE COEFFICIENT OF
ENERGY IN THE EXPONENT IS +it RATHER THAN −it. But
by construction, the states were all positive-energy so there is no negative-
energy issue.
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2 Spin

The subject of rotations, spin and angular momentum – for Dirac particles
– has been treated several times in the past couple of years. It’s worth doing
again so we can connect with Thomson.

� The ‘spin’ of an electron, is regarded as a property of some kind of
internal degrees of freedom of the electron – much as if the electron
were a solid object like a top. This is just a mnemonic.

� Angular momentum is, classically, proportional to ‘rate of rotation’.
For example, if a top rotates around the z-axis, then its angular mo-
mentum is

Ltop = Iω (22)

where ω = dθ
dt

where θ is the angle of rotation around the z-axis.

� Thomson, page 104, tells us that the spin operator for Dirac wavefunc-
tions is

Ŝz =
1

2
Σz ≡

(
σz 0
0 σz

)
=

1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (23)

This expression is using the Pauli-Dirac representation of the gamma
matrices.1

� Rotations by an angle θ are expressed as 2

R̂z(θ) = eiŜzθ (24)

so if we have a Dirac wavefunction ψi(0), the rotation acts as

R̂z(θ)


ψ1

ψ2

ψ3

ψ4

 =


ei
θ
2ψ1

e−i
θ
2ψ2

ei
θ
2ψ3

e−i
θ
2ψ4

 . (25)

I chose the coordinates to be 0 because I didn’t want, yet, to deal with
how those rotate. If you look, example, at the notes Introduction to
the Dirac Equation, you’ll see how to rotate coordinates around the
z-axis, and then you’ll see how to demonstrate that the Dirac equation
is invariant when you rotate both the indices and the coordinates.

1In previous notes I tended to prefer the Weyl representation so you may see differences.
2I’m being a bit careless with the sign in the exponent. There might be a minus sign.
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� Recall the Dirac wavefunctions defined in eq. (17), ψp
s (x, t). These are

proportional to us(p). Thomson shows, on page 104, that

Ŝzus(p) = sus(p) (26)

where s = ±1
2

and p = ±(0, 0, 0, p).

3 Homework

� EXERCISE Make sure you follow the section of Thomson at the be-
ginning of section 4.8 in which he derives eq. (26) and then show that
the states ψp

s (x, t) are eigenvectors of the spin operator. (Take p to be
in the z-direction as above.) Find the eigenvalues.

� Read sections 4.8 and 4.9, especially about helicity. I’ll cover this
briefly, but it’s an important aspect of how people think about electrons
and other spin 1

2
particles. Gather questions to ask.

� SOLUTION

First apply the spin operator to the spinors us(p)j which appear in eq.
(17) above. Take, for example, u1 in Thomson on page 104 (but set
the normalization factor N to 1 – this just makes the notation easier
and doesn’t change the final answer) and Ŝz from eq. (23)

Ŝzu1(p) =
1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




1
0
±p
E+m

0



=
1

2


1
0
±p
E+m

0


=

1

2
u1(p).

(27)
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where E =
√
p2 +m2. Similarly

Ŝzu2(p) =
1

2


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1




0
1
0
±p
E+m



= −1

2


0
1
0
±p
E+m


= −1

2
u2(p).

(28)

Then, to solve the problem, recall from eq. (17) that

ψp
s (x, t)j =

1

(2π)3
e−i(Et−p·x)us(p)j (29)

Now apply the spin operator above, noting that it acts only on the
spinors us(p). For example,

Ŝzψ
p
2 (x, t) =

1

(2π)3
e−i(Et−p·x)Ŝzu2(p)

= −1

2
ψp

2 (x, t).

(30)

4 Helicity

The subject of helicity is covered in Thomson section 4.8.1. In my opinion,
there is way too much detail here for our purposes.

Here’s the definition:

ĥ ≡ Helicity =
Ŝ · p
p

(31)

where Ŝ = (Ŝx, Ŝy, Ŝz) and p is the 3-momentum for a general direction (no
longer the z-direction). The spin operators here are specifically defined for
the spinor representation (of spin-1

2
) but the concept can easily be generalized

for other kinds of particles like photons or gravitons (scalars are boring since
they have no spin).

When the momentum is in the z-direction, helicity is proportional to the
z-spin, so this can simply be regarded as ‘spin in the motion of direction’.

Thomson gives two reasons why helicity is a concept that replaces spin
in many applications:
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� The Dirac spinors above are eigenstates of the spin-z operator. How-
ever, that’s only true when the momentum is in the z-direction. So if
the electron is traveling in some other direction, its Dirac spinors aren’t
eigenvectors of the spin-z operator and therefore aren’t necessarily as
‘interesting’ or easy to work with.

� As a related matter, the spin operator generally doesn’t commute with
the Dirac Hamiltonian (except when it is operating on plane waves
moving in the z-direction). One consequence is that energy eigenstates
– which correspond to lines in the spectrum – don’t necessarily corre-
spond to spin eigenstates.

Frankly, I don’t regard either of these two explanations as especially com-
pelling reasons to concern us.

I checked what Schwartz has said by way of motivation and he seems less
interested in helicity (other than for completeness of presentation). There is
yet a different concept called chirality which I’ll skip for now. That matters
more since it is very relevant in weak interactions. For massless or very light
or very slow particles, chirality and helicity are effectively the same.

Lancaster seems to have the same view as Schwartz.
Historically, the notion of helicity is used when describing photons, in

which case it is known as circular polarization.
Finally, Thomson introduces helicity spinors in his equation 4.66 and 4.67.

These are analogues of the Dirac spinors he introduced earlier, but with the
property that they are eigenvectors of the helicity.

5 Take-aways

What can we do with all this Dirac technology?

� Spectroscopy. The Dirac equation is like the Schrodinger equation.
We can solve the eigenvalue equation. What’s missing so far, is the
‘potential’ function. We’ve only looked at free particles and their spec-
trum is boring (plane waves with continuous eigenvalues, or discrete if
the electrons are in a box).

We can add a potential (electromagnetic) and then find the eigenvalues
of, for example, the hydrogen atom. By the way, we don’t need to
interpret the meaning of the Dirac wavefunction ψ which appears in
the Dirac equation. If all we care about is the spectrum, then that
wavefunction may or may not have anything to do with probability or
field operators etc. It just doesn’t matter.
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� Scattering. The tool we use is perturbation theory, represented schemat-
ically by Feynman diagrams. This is a bunch of rules derived from
perturbative field theory, where the leading terms correspond to free
non-interacting particles. The general approach starts with particle
and antiparticle states of the form 〈x, e±, j| discussed above in eq. (13)
and which involve the Dirac spinors us(p etc. Once again, we don’t
need to interpret ψ.

6 Feynman diagram-ology

6.1 Perturbation Theory – copied from notes on Thom-
son Chapter 1

The mathematical interpretation of Feynman diagrams is in the context of
the calculation of either decay amplitudes or scattering amplitudes. If an
amplitude is denoted A, then the probability is denoted |A|2. Feynman
diagrams are schematics for calculations of amplitudes.

A decay amplitude (per unit time) is the amplitude that a single particle
decays into a particular set of outgoing particles. Also of interest is the
cumulative decay amplitude for the particle to decay into anything. This
quantity is inversely proportional to the particle’s lifetime.

A scattering amplitude is the amplitude that two colliding particles pro-
duce a particular set of outgoing particles.

� Amplitudes are derived from path integrals by computing moments of
the form

Gi1...in(y1, ..., yn) ≡
∫
Dφiei(

∫
d4xL(φi))(x)+iε)

n∏
j=1

φij(yj). (32)

In this expression, the Lagrangian is a function of fields shown generi-
cally as φ but which can represent, for example Aµ or ψνe .

� If the Lagrangian were quadratic in the fields, then these moments could
be computed exactly, in the same way that moments of a Gaussian
distribution can be computed exactly.

� This enables us to compute perturbatively. Rewrite the Lagrangian
generically as

L = L0 + λLI (33)
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where L0 is the part of the Lagrangian which is quadratic (this part is
called the free Lagrangian) and λLI is the rest, and is called the inter-
action term. Here λ is a coupling constant which, for the purposes of
perturbation theory, must be small. An example of the electromagnetic
interaction term is:

LEM = −eψ̄e /Aψe

≡ −e
∑
i,j,k,µ

ψe†i γ
0
ijγ

µ
jkAµψ

e
k + ... (34)

� Then we can expand the exponential in the path integral as

ei
∫
d4x(L0+λLI+iε) = ei

∫
d4x(L0+iε)eiλ

∫
d4xLI

= ei
∫
d4x(L0+iε)

(
1 + iλ

∫
d4y1LI + i2

λ2

2!

∫
d4y1LI

∫
d4y2LI + ...

)
(35)

� Now, when we compute the path-integral, the exponential term is
quadratic, and the interaction piece has become a series contributing
to the moments – all of which are calculable.

� Consider the term i2 λ
2

2!

∫
d4y1LI

∫
d4y2LI where, for example, we take

λLI to be the electromagnetic term above. This becomes3

− e2

∫
d4y1d

4y2

(
ψ̄e /Aψe

)
(y1)

(
ψ̄e /Aψe

)
(y2) (36)

� This represents the schematic of Fig 1.5 from Thomson.

3For sticklers, please note that we haven’t ever said what we mean by path integrals
involving fermions. Technically, these fields are regarded as members of a Grassman
algebra, and integration is defined rather differently than it would be for regular complex-
valued fields. However, miraculously, the formalism works with few modifications.
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Figure 1: Thomson Figure 1.5

The vertex appears twice. It turns out that we don’t have to path-
integrate the fields which appear as free particles (i.e., altogether 4
fermion fields ). The moment-integral only has to do with the two
appearances of A. This is the meaning of the connected line. The
moment-integral corresponding to the connected line is known as the
propagator and has the generic form stuff

p2−m2+iε
. The momentum ap-

pearing in this expression is the momentum mentioned in the previous
section and which, as mentioned in the previous section does not have
the property that p2 = m2.4

4Since gluons are massless, this particular example would have m2 = 0.
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6.2 Scattering rules – Dirac spinors

Figure 2: Rutherford Scattering(from Schwartz))
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In this image we fill in some of the details of the perturbation theory. Corre-
sponding to each of the free spin-1

2
particles (two going in and two going out)

you have to multiply spinors corresponding to each particle. For example, you
have the term ū(p3)γµu(p1) which is shorthand notation for uT (p3)γ0γ

µu(p1).
5 You’ll see, if you look at eq. (34), that this product resembles the inter-
action term, where the Dirac spinors are in the place of the fields ψ. You
might wonder what happens to the Aµ appearing in eq. (34). This is the
electromagnetic field and shows up in the diagram as a constituent of the
photon propagator – the wavy line which is represented by the denominator
of equation 13.82.

5Schwartz uses a common convention where momenta written in boldface refer to the
three spacial components of the momentum, and if the momentum is written in regular
font, it represents the four components of momenta. When dealing with free particles, you
have a dispersion relation which relates the 0 component to the others. That dispersion
relation cannot be used for the joined lines in diagrams.
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6.3 Scattering rules – Dirac propagator

Figure 3: Compton Scattering(from Schwartz))

The main point of showing this image, is that the ‘joined’ line here, isn’t
wavy. In fact, it is the fermion propagator. It joins two vertices and, not
surprisingly, must contract one of the spinors from each of the two joined
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vertices. We end up with a sum over spins:

2∑
s=1

us(p)ūs(p) = /p−m. (37)

You’ll notice this in the numerator of equation 13.106 (the momentum of the
middle fermion line is p1 + p2).

7 Afterwords

Some issues surfaced during the writing and presentation of the above notes.
I have a separate document that attempts (and partly fails) to resolve those
issues. See https://billcelmaster.com/wp-content/uploads/2022/01/

Some-basic-relativistic-quantum-mechanics-puzzles.pdf
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