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Preliminaries

• Abstractly, we denote the Poincaré group by P and the Lorentz group by
L, so L ⊂ P. L acts on 4-dimensional Minkowski space, denoted by R3,1,
as a group of 4× 4 matrices (this is called the fundamental representation
of L). These matrices will generally be denoted by Λ. The Poincaré group
acts on R3,1 is a group of inhomogeneous linear transformations

x → Λx + a

where the 4-vector a defines a spacetime translation. Elements of P in
this representation may be then written as p(Λx,a).

• P has an infinite dimensional (reducible) unitary representation as a group
of operators acting on the Hilbert space

H = L2(R3,1, d4x)

Here d4x is viewed as a positive measure, invariant under that action of
P. The action of an element (Λ, a) ∈ P on a function ψ ∈ H is defined
by group translation, Tp : ψ(x)→ ψ(p−1x):

ρ(Λ, a) : ψ(x)→ ψ′(x) = ψ(Λ−1(x− a)) = ψ(x′)

This representation is unitary because detΛ = 1, which is why we say that
d4x is a Poincaré invariant measure:∫

d4x ψ(x) =

∫
d4x ψ(Λ−1(x− a)) =

∫
d4x′ ψ(x′)

• The unitary infinite dimensional action of P on H = L2(R3,1, d4x) is
generated by a 10-dimensional Lie algebra. Generators of this Lie algebra
can be represented as 10 first-order linear differential operators, in their
Hermitian form given by

J1 = i
(
x3∂2 − x2∂3

)
J2 = i

(
x1∂3 − x3∂1

)
J3 = i

(
x2∂1 − x1∂2

)
K1 = −i

(
x1∂0 + x0∂1

)
K2 = −i

(
x2∂0 + x0∂2

)
K3 = −i

(
x3∂0 + x0∂3

)
H = i∂0 P1 = −i∂1 P2 = −i∂2 P3 = −i∂3

Thus, for example, the action of a rotation about the x3 axis by angle θ
is given by

ψ(x)→ ψ′(x) = ψ
(
e−iJ3θx

)
= ψ(x0, x1 cos θ+x2 sin θ,−x1 sin θ+x2 cos θ, x3)

The Lie algebra generators (J`,K`, H, P`) satisfy a canonical set of com-
mutation relations, which will be discussed in more detail below. These
commutation relations must necessarily be satisfied by any generators of
a Poincaré group representation.
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Irreducibility: spin 0 representations of mass m
The infinite dimensional unitary representation ρ(Λ,a) of the Poincaré group on
L2(R3,1, d4x), given above, is not irreducible. The purpose of everything that
follows is to construct an irreducible representation.

Reducibility means the following. ρ acting on H is said to be reducible if there
are subspaces Hm ⊂H which are invariant under every operator ρ(Λ,a) in the
representation. If ρ is reducible, and if we restrict ρ to an invariant subspace
Hm ⊂ H we get a subrepresentation of ρ. If there are no further invariant
subspaces in Hm we say the the subrepresentation is irreducible.

Determining irreducibility turns out to be closely tied to determining a set of
Casimir operators. Casimir operators are defined as operators which commute
with every element of the Lie algebra.

Lemma 1 (Schur’s Lemma) A representation ρ is irreducible if and only if
every Casimir of its Lie algebra is a multiple of the identity operator.

Lemma 2 Let {J`,Km, H, Pk} be the generators of the Poincaré group repre-
sentation ρ given above, acting on the Hilbert space H = L2(R3,1, d4x). Define
the operator

M2 = H2 − P 2
1 − P 2

2 − P 2
3 (1)

Then

1. M2 commutes with all of the generators {J`,Km, H, Pk}, i.e. M2 is a
Casimir for the representation ρ

2. for every m > 0, M2 has an infinite dimensional eigenspace

Hm = {ψ ∈H : M2ψ = m2ψ} ⊂H

It follows that Hm is invariant under the action of ρ, and so restricting ρ to
Hm gives us a subrepresentation.

See discussion of the Klein-Gordon equation below. It is not claimed that the
subrepresentation ρm is irreducible. It will turn out however that ρm is in fact
irreducible. This will follow from

Lemma 3 The representation ρ generated by {J`,Km, H, Pk} on H = L2(R3,1)
is spin 0. This means that the operator

S2 = WµWµ (2)

vanishes identically on H , and is therefore (trivially) a Casimir operator for
the representation ρ. Here Wµ is the Pauli-Lubanski vector

Wµ =

[
J ·P

HJ−P×K

]
Each of the 4 operators in this vector vanishes identically on H .

Casimirs
In the present case, S2 = 0 is a trivial Casimir, and only the M2 Casimir has
influence. It turns out there are no other Casimirs in our representation of the
Poincaré Lie group. This is essentially because the representation acts on scalar
functions, rather than spinors.

Lemma 4 M2 is the only Casimir for the Poincaré group Lie algebra repre-
sentation given above. Consequently (by Schur’s lemma), the subrepresentation
ρm acts irreducibly on the M2 eigenspace Hm ⊂H .
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Summary
According to the above discussion, we have now found irreducible representa-
tions of the Poincaré group P indexed by m > 0. Namely, P acts irreducibly
on the subspace Hm, the eigenspace of M2 with eigenvalue m2. In the Wigner
classification these are the spin 0 representations.

But now comes the interesting part! We can give an explicit construction of
this representation. This will make use of the mass shell in momentum space.

The Invariant Subspace Hm ⊂H
In the scalar case, eigenstates of the operator (1) are functions satisfying the
Klein-Gordon equation

−M2ψm =

(
∂2

∂t2
−∆

)
ψm = −m2ψm (3)

where ∆ is the spatial Laplace operator on R3. Fixing the eigenvalue m2, the
linear eigenspace Hm ⊂ L2(R3,1) of M2 is invariant under the action of the
Poincaré group, and this action is irreducible. Hm is spanned by dispersive
plane-wave solutions of the Klein-Gordon equation,

ψm(t,x) = ei(Et−p·x) E2 − |p|2 = m2 (4)

and the general function in Hm is representable as a superposition of these
plane waves, whose wave 4-vectors k = (E, p) are confined to a mass shell.

Integration over a Mass Shell
The eigenspace Hm is spanned by dispersive plane-waves (4). The dispersion
relation E2−|p|2 = m2 has a geometrical interpretation: the energy-momentum
4-vector p = (E,p) defining the plane wave is confined to a 3-dimensional
hyperboloid sheet, or mass shell in Minkowski space,

Σ(m) = {(E,p) ∈ R4 : E2 − |p| = m2 > 0} ⊂ R3,1

A general function in Hm is represented as a superposition of plane waves of
mass m,

ψ(t,x) =

∫
(E,p)∈Σ(m)

ψ̂(E,p)ei(Et−p·x)dµ

where ψ̂(E,p) is a weight function and dµ is a positive measure on the mass
shell Σ(m). Introducing p as coordinates on the mass shell, it is natural to take
the nice Lorentz-invariant measure (see Appendix I)

dµ =
d3p

Ep
Ep =

√
m2 + |p|2

which lets us write the general function in Hm as a type of Fourier integral over
3-space:

ψ(t,x) =

∫
d3p

Ep
ei(Ept−p·x)ψ̂(p) (5)

This gives an expression for the general element ψ(t,x) in the invariant subspace

Hm ⊂H in terms of a “weight function” ψ̂(p) defined on the mass shell Σ(m).

The next step is essentially to throw away the ψ(t,x) functions and work just

with the weight functions ψ̂(p) on Σ(m). These functions can be taken to lie in

the Hilbert space Ĥm of functions on Σ(m) with invariant inner product

〈ψ̂1|ψ̂2〉 =

∫
d3p

Ep
ψ̂∗1(p)ψ̂2(p)

We now define an irreducible representation of the Poincaré group on the Hilbert space Ĥm..
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The Poincaré Group P acting on mass shell Hilbert space Ĥm

Above we defined 10 generators {J`,Km, H, Pk} for the Lie algebra of the
Poincaré group acting on H = L2(R3,1, d4x). These operators satisfy a set
of commutation relations

[J2, J3] = iJ1 [K2,K3] = −iJ1 [J2,K3] = iK1

[J3, J1] = iJ2 [K3,K1] = −iJ2 [J3,K1] = iK2

[J1, J2] = iJ3 [K1,K2] = −iJ3 [J1,K2] = iK3

[J2,P3] = iP1 [K1,P1] = −iH [K1,H] = −iP1

[J3,P1] = iP2 [K2,P2] = −iH [K2,H] = −iP2

[J1,P2] = iP3 [K3,P3] = −iH [K3,H] = −iP3

all other commutators being zero. It can be shown that any representation of the
Poincaré group has a basis of generators satisfying these commutation relations.

The 10 generators of the Lie algebra of P acting on the mass shell Hilbert space
Ĥm are as follows (Appendix II)

J1 = i
(
p3∂2 − p2∂3

)
J2 = i

(
p1∂3 − p3∂1

)
J3 = i

(
p2∂1 − p1∂2

)
K1 = −iEp∂1 K2 = −iEp∂2 K3 = −iEp∂3

H = Ep P1 = −p1 P2 = −p2 P3 = −p3

here ∂k = ∂/∂pk, k = 1, 2, 3 and the spacetime translation generators (H,Pk)
are Hermitian operators which act by multiplication,

Hψ = Ep · ψ Pkψ = −pk · ψ

One checks that the Hermitian operators {J`,Km, H, Pk} defined here do indeed
satisfy the canonical commutations relations of the Poincaré group given above.
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Appendix I: Mass Shell Geometry
The mass shell Σ(m) is representable as 3-dimensional parametrized surface in
Minkowski momentum space

E
p1

p2

p3

 =


√
m2 + |p|2
p1

p2

p3


Taking p = (p1, p2, p3) as surface parameters, by differentiating we get 3 tangent
basis vectors at each point σ(p) ∈ Σ(m):

w1(p) =


p1/
√
m2 + |p|2

1
0
0

 w2(p) =


p2/
√
m2 + |p|2

0
1
0

 w3(p) =


p3/
√
m2 + |p|2

0
0
1


Taking the Lorentz metric with signature (−.+,+,+), the Lorentz metric is
positive definite on a tangent space to Σ(m), given in our basis vectors by the
3× 3 metric tensor

gij(p) = (wi,wj)Lorentz ⇔ G = I3×3 −
ppT

m2 + |p|2

This makes the mass shell Σ(m) into a Riemannian manifold1 with volume form

volΣ(m) =
√

det G dp1 ∧ dp2 ∧ dp3 =
m√

m2 + |p|2
dp1 ∧ dp2 ∧ dp3

This volume form on Σ(m) is used to construct a Lebesgue measure dµm on
Σ(m) and a Hilbert space Ĥm = L2(Σ(m), dµm) of functions on Σ(m) with
inner product

〈ψ̂1|ψ̂2〉 =

∫
ψ̂∗1(p)ψ̂2(p)dµm dµm =

d3p

Ep
Ep =

√
m2 + |p|2

The Lorentz group leaves the mass shell Σm invariant and, since the measure
dµm is Lorentz invariant, acts on functions in Hm as an infinite dimensional
unitary representation of the Lorentz group. In has the following Lie algebra
generators, given in Hermitian form by (see Appendix II)

J1 = i
(
p3∂2 − p2∂3

)
J2 = i

(
p1∂3 − p3∂1

)
J3 = i

(
p2∂1 − p1∂2

)
K1 = −i

√
m2 + |p|2 ∂1 K2 = −i

√
m2 + |p|2 ∂2 K3 = −i

√
m2 + |p|2 ∂3

These satisfy the canonical commutation relations of the Lie algebra of the
Lorentz group

[J2, J3] = iJ1 [K2,K3] = −iJ1 [J2,K3] = iK1

[J3, J1] = iJ2 [K3,K1] = −iJ2 [J3,K1] = iK2

[J1, J2] = iJ3 [K1,K2] = −iJ3 [J1,K2] = iK3

1indeed, a Riemannian manifold with a transitive group of isometries, and so having con-
stant curvature. I haven’t done the work, but feel this must be a manifold of constant negative
Riemannian curvature.
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Appendix II: Action of P on Ĥm, and its generators
Boost along x1 axis acting on Σ(m) ⊂ R3,1:

Ep → E′p = =
√
m2 + |p|2 coshα+ p1 sinhα

p→ p′ =

 √m2 + |p|2 sinhα+ p1 coshα
p2

p3


The transformation p → p′ preserves the measure dµm = d3p/

√
m2 + |p|2 on

Σm:

dp′1 =
p · dp√
m2 + |p|2

sinhα+ coshαdp1

=

(
p1√

m2 + |p|2
sinhα+ coshα

)
dp1 +

1√
m2 + |p|2

(p2dp2 + p3dp3)

dp′1∧dp′2∧dp′3 =

√
m2 + |p|2 coshα+ p1 sinhα√

m2 + |p|2
dp1∧dp2∧dp3 =

E′p
Ep

dp1∧dp2∧dp3

or
dp1 ∧ dp2 ∧ dp3

Ep
→ dp′1 ∧ dp′2 ∧ dp′3

E′p

Lie Algebra Generators for the Lorentz Group

As an example, compute the infinitesimal boost operator acting on L2(Σm, dµm)

iK1ψ =
d

dα

∣∣∣
α=0

ψ(
√
m2 + |p|2 sinhα+ p1 coshα, p2, p3) =

√
m2 + |p|2 ∂1ψ

Infinitesimal rotation operators have the usual representations, e.g. J3 = i
(
p2∂1 − p1∂2

)
.

We can write down 6 Hermitian generators for the Lie algebra representation:

J1 = i
(
p3∂2 − p2∂3

)
J2 = i

(
p1∂3 − p3∂1

)
J3 = i

(
p2∂1 − p1∂2

)
K1 = −i

√
m2 + |p|2 ∂1 K2 = −i

√
m2 + |p|2 ∂2 K3 = −i

√
m2 + |p|2 ∂3

One checks that these operators do indeed satisfy the commutation relations

[J2, J3] = iJ1 [K2,K3] = −iJ1 [J2,K3] = iK1

[J3, J1] = iJ2 [K3,K1] = −iJ2 [J3,K1] = iK2

[J1, J2] = iJ3 [K1,K2] = −iJ3 [J1,K2] = iK3

(6)

Lie Algebra Generators for Spacetime Translation
We make use of equation (5).

ψ(t+ ∆t,x) =

∫
d3p

Ep
ei(Ept−p·x)

(
eiEp∆tψ̂(p)

)
ψ(t,x + ∆x) =

∫
d3p

Ep
ei(Ept−p·x)

(
e−ip·∆xψ̂(p)

)
Thus spacetime translations act on functions in Ĥm by multiplication by a phase
factor. The corresponding infinitesimal generators, given Hermitian character,
become

H = Ep P1 = −p1 P2 = −p2 P3 = −p3

For instance H is the Hermitian operator H : ψ(p) → Epψ(p). These transla-
tion generators are found to satisfy the following commutation relations

[J2,P3] = iP1 [K1,P1] = −iH [K1,H] = −iP1

[J3,P1] = iP2 [K2,P2] = −iH [K2,H] = −iP2

[J1,P2] = iP3 [K3,P3] = −iH [K3,H] = −iP3
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