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1 Where we’ve come from and where we’re

going

1.1 Chapter 1

� We’re given the taxonomy of elementary particles, and some rules for
their interactions.

� We use these vertices to compose schematics known as “Feynman dia-
grams”. There are schematic rules that tell us how to compute
the rate of the process depicted – either a scattering process
or a decay process.

– The end of a line (straight or squiggly) can either be connected to
a vertex or it can be “free”. In the above diagrams, all lines have
one free end and one end connected to a vertex. We call these
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“free lines”. If both ends are connected, we call it a “connected
line”. See the squiggly line below.

– We describe the schematics with jargon:

* A free line is called a “real particle”

* A connected line is called a “virtual particle”

– The diagram is interpreted as time-ordered for real particles: Real
particles on the left are ingoing (e.g. they are colliding with one
another or decaying); real particles on the right are outgoing (the
products of a collision or decay).

– Virtual particles are not time-ordered, even if they are depicted
as going from left to right. We are free to regard a virtual particle
as either entering a vertex, or departing a vertex.

– The real particles describe the experiment. We must specify prop-
erties such as momentum, polarization and spin.

– Virtual particles represent a weighted average over all possibilities
consistent with the real-particle specifications and vertex rules.
Virtual particles also “carry” a momentum which appears in math-
ematical expressions representing the connected line in question.

– The vertex rules (i.e., interaction rules and momentum conser-
vation) determine whether or not a certain set of particles can
collide and produce another set of particles. If a schematic can’t
be created for that scenario, then the scenario isn’t possible. At
a vertex, momentum is conserved.

� The lines of a vertex represent fields in a Lagrangian. For example,
consider the Lagrangian for electrons (or positrons) interacting with
an electromagnetic field.

L = L0 + LEM (1)
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where L0 is the part of the Lagrangian which is quadratic (this part is
called the free Lagrangian) in the electron field ψei or the electromag-
netic field Aµ, and LEM is the electromagnetic interaction term

LEM = −e
∑
i,j,k,µ

ψe†i γ
0
ijγ

µ
jkAµψ

e
k (2)

This interaction term can be seen to be a sum of products of 3 field
terms, ψe†i , Aµ, and ψek multiplied by complex coefficients formed from
products of components of γ matrices. The coefficients include an over-
all factor of e, which is known as the coupling constant.

� The schematic rules are obtained from the Lagrangian by one of several
techniques. My favorite technique is to use the Lagrangian in a path
integral whose integrand includes a term

ei
∫
d4x(L0+LEM+iε) = ei

∫
d4x(L0+iε)ei

∫
d4xLEM

= ei
∫
d4x(L0+iε)

(
1 + i

∫
d4y1LEM + i2

1

2!

∫
d4y1LEM

∫
d4y2LEM + ...

)
(3)

where we’ve Taylor expanded the second exponential, using the as-
sumption that LEM is small.

� What if there were an additional interaction term so that the total
interaction term looks like

LI = LEM + g
∑
i,j,k,l

ψe†i γ
0
ijψ

e
jψ

e†
k γ

0
klψ

e
l . (4)

This term is a sum of products of 4 field terms and would be represented
by a vertex that looks like this.

However, such an interaction term is absent in the Lagrangian for elec-
trons and photons. There are various kinds of rules that prohibit such
a term. In general, the construction of “allowed” Lagrangians is called
model-building.
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1.2 Chapters 2 and 3

� Relativity in a nutshell

� Non-relativistic quantum mechanics in a nutshell

� The kinematics of decay and scattering: Although the Feynman dia-
grams are used to compute amplitudes for particles with specific mo-
menta, actual experiments look at ranges of angles and velocities. The
probability amplitudes have to be integrated appropriately over those
ranges and this section covers some of those details.

� Fermi’s Golden Rule: This connects ordinary quantum mechanics to
the Feynman diagram approach above. We see in this section, that the
collision of particles can be regarded as an interaction governed by the
Hamiltonian which, in non-relativistic physics, is characterized by both
a kinetic term and a potential term. The leading approximation for the
collision amplitude, is obtained by an expression of the form 〈f |ĤI |i〉
where ĤI is the interaction part of the Hamiltonian.

1.3 Chapter 4

This chapter begins the long slog towards adding details to the Feynman-
diagram rules. Our first task is to identify the ‘real particles’ participating in
the collision. The particle of most interest in the early days, was the electron.
The standard approach to this subject, is to regard electron physics as a
relativistic extension to the free-particle Schrodinger equation.

� The Schrodinger equation violates Lorentz invariance. The simplest
extension is the Klein-Gordon equation. Unfortunately, it doesn’t de-
scribe any particles known in the 1920’s. However, the K-G equation
was apparently discarded on the basis of some unresolved conceptual
issues, rather than on experimental grounds.

� An alternative, discovered by Dirac, was the Dirac equation. This
required the hypothesis that electrons had to be represented by multi-
component functions of time and space (unlike Schrodinger particles
that were one-component complex functions of time and space). That
was a happy observation, because experiments had already concluded
that electrons appear to have an extra degree of freedom which was
called “spin”.
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� Dirac ended up having to sort out the same conceptual difficulties that
had plagued the Klein-Gordon equation, but because of the fortuitous
explanation for spin, he fought his way through all that. This ulti-
mately led him to a more systematic interpretation of his equation as
an equation for fields, rather than for states.

� In Chapter 4, we are introduced to the notations used to characterize
Dirac particles in terms of their momentum and spin (Dirac spinors)
as well as to describe kinematic and frame-transformation properties
(Dirac gamma matrices). This is all essential for properly identifying
the multiplicands that appear for the fermion lines in Feynman dia-
grams.

1.4 Where we’re going

� We’re now in a position to provide a complete set of rules for Feyn-
man diagrams describing electron, positron and photon scattering. We
haven’t talked about the photon so we start there. But then – rather
than dwell on the derivation of the rules – we can simply take for
granted that the path-integral formulation, along with rules for mo-
ments of integrals involving exponents of quadratic forms, will lead to
those rules. This is Chapter 5.

� Rules are messy. Some examples are called for. This is Chapter 6.

� After that, we are ready to start introducing other particles and their
Feynman rules. We start with the proton. On the one hand, one can
treat it just like a heavier cousin of the electron. On the other hand,
we’ve learned that the proton – unlike the electron – is a composite
particle whose components are quarks. So an electron-proton collision
is actually a collision of an electron with 3 bound quarks. Chapter 7
discusses the kinds of modifications to be made when a particle (such
as the proton) has structure. In practice, this is the sort of thing that
helped physicists establish experimentally the quark structure of the
proton.

� Chapter 8 goes further into this topic but, in my opinion, is somewhat
more detailed that we need to cover. It might be of interest to those
who want to understand more about the experiments that probe the
deep structure of protons.

� Finally in Chapter 9, we can begin the analysis of quark symmetries
and more generally, the symmetry-theory underlying the taxonomy of
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particles discussed in Chapter 1. Thomson’s approach is grounded in
the experimental evidence that led to our current models. Another
approach would be more formal and elegant where we begin by pos-
tulating certain symmetries and then using group properties to derive
patterns and interactions.

2 Chapter 5: Feynman rules for QED (Quan-

tum Electrodynamics)

We construct Feynman diagrams by joining permissible vertices to one an-
other, and to “free lines” (real particles) representing the initial or final
particles of a scattering or decay process. Each free line is associated with
a particular spin or polarization and all lines are labelled by a momentum.
Momentum is conserved at vertices. The rules for the Feynman diagram tell
you how to compute the amplitude.

Consider the example of an electron scattering with a tau (a third-generation
charged lepton).
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We put all this together to compute the Lorentz invariant matrix element
proportional to the scattering amplitude.

− iM = [ū(p3){ieγµ}u(p1)]
−igµν
q2

[ū(p4){ieγν}u(p2)]. (5)

The above diagram is “interaction by particle exchange” and is
sometimes called a t-channel diagram because the virtual particle has
a momentum q = p1 − p3, and q2 is known as the Mandelstam variable “t”.

3 Chapter 6: Electron-positron annihilation

The process of electron-positron annihilation, in leading perturbative order,
has a similar diagram to the particle-exchange process above. There are two
vertices joined by a connected line (virtual particle). However, the time-
orientation is different. Not surprisingly, the amplitudes are related.
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The diagram on top has two vertices and is a sideways version of the
diagram for electron-tau scattering. The diagrams below illustrate higher
orders in perturbation theory. They each have 4 vertices (and are therefore
of order 4 in the coupling constant).

Following the Feynman rules, we obtain

M = −e
2

q2
gµν [v̄(p2)γ

µu(p1)][ū(p3)γ
νv(p4)], (6)

where the incoming particles have momenta p1 and p2, and the momentum q
of the virtual photon, is q = p1 + p2, the center-of-mass 4-momentum. Using
Mandelstam variables, we see that s = q2, so we often describe this process
as an s-channel process.

The text goes into a lot of detail about how to related this amplitude
to quantities that are measured in actual experiments. For example, rather
than measuring the spin – which is used for obtaining the above amplitude
– experimentalists often describe scattering in terms of helicities. The text
shows the relationship between spin and helicity. Furthermore, experiments
are sometimes unable to distinguish between one spin (or helicity) and an-
other, in which case we are interested in the total amplitude obtained by
averaging or summing over all spins. Again, the text describes some con-
venient relationships for obtaining those without having to struggle through
messy 4 x 4 matrix calculations.
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