
Making sense of QFT
Lecture 2: Wigner's particles. Q&A, Exercises
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Outline:
Q1: What is the physical meaning of irreducible representations of the Poincaré 

group?
Q2: What is the physical meaning of reducible representations of the Poincaré 

group?
Q3: What is the physical meaning of Casimir operators?
Q4: How come that electron's wave function has 2 components, but Dirac's field has 

4 components?

Exercise 1: Prove 𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵 = 𝐴 + 𝑡 𝐵, 𝐴 +
𝑡2

2!
𝐵, 𝐵, 𝐴 +⋯

Exercise 2: How do components of momentum transform under rotations?

Exercise 3: Show that energy-momentum 𝐻, 𝑐𝑃𝑥, 𝑐𝑃𝑦, 𝑐𝑃𝑧 form components of a 

relativistic 4-vector.
Exercise 4: Show that mass squared 𝑀2 = 𝐻2 − 𝑃2𝑐2 /𝑐4 is a Casimir operator.
Exercise 5: Build Hilbert space H of a massive spinless representation of the 

Poincaré group.



Q1: What is the physical meaning of irreducible representations 
of the Poincaré group?



Q1: What is the physical meaning of irreducible representations 
of the Poincaré group?

• Theorem: Unitary representations 𝑈𝑔 of a group is irreducible if and only if it 

is cyclic.
• The meaning of a cyclic representation:

o if we take any vector | ۧΨ ∈ H from the representation Hilbert space,
o apply to | ۧΨ representation operators 𝑈𝑔 for all group elements 𝑔,

o form a linear span (all possible linear combinations) of all images 𝑈𝑔| ۧΨ ,
o then we obtain the entire Hilbert space H.

| ۧΨ
𝑈𝑔1| ۧΨ

𝑈𝑔4| ۧΨ

𝑈𝑔3| ۧΨ𝑈𝑔2| ۧΨ

H



Q1: What is the physical meaning of irreducible representations 
of the Poincaré group? (continued)

• Example: Spinless massive particle

H

Pc

𝑚𝑐2

ψ 𝒑



Q1: What is the physical meaning of irreducible representations 
of the Poincaré group? (continued)

• Example: Spinless massive particle
• Observer is moving to the left

H

Pc𝑣

𝑚𝑐2



Q1: What is the physical meaning of irreducible representations 
of the Poincaré group? (continued)

• Example: Spinless massive particle
• Observer is moving to the right.

H

Pc𝑣

𝑚𝑐2

Conclusion: changes of 
observer allow to explore 
the entire Hilbert space => 
representation is cyclic => 
representation is irreducible



Q1: What is the physical meaning of irreducible representations 
of the Poincaré group? (continued)

• Example: Massive particle with spin 1/2

H

Pc

𝑚𝑐2

ψ 𝒑, 𝑠

spin up 𝒔 = Τ𝟏 𝟐
spin down 𝑠 = Τ−1 2



Q1: What is the physical meaning of irreducible representations 
of the Poincaré group? (continued)

• Example: Massive particle with spin 1/2
• After rotation by 180 degrees the spin projection changes its sign.

H

Pc

𝑚𝑐2

Conclusion: changes of 
observer allow to explore 
the entire Hilbert space => 
representation is cyclic => 
representation is irreducible

spin up 𝑠 = Τ1 2
spin down 𝑠 = Τ−1 2



Q2: What is the physical meaning of reducible representations 
of the Poincaré group? 



Q2: What is the physical meaning of reducible representations 
of the Poincaré group? 

• Example: Multiparticle bound state (e.g., hydrogen atom) is described by a 
reducible representation of the Poincaré group.

• If the system is in its ground state, then this is true for all inertial observers.
• By changing observer, one cannot "excite" the atom.

Conclusions: 
• Representation in the Hilbert space of the 

hydrogen atom is a direct sum of 
irreducible ones:

𝑈𝑔 = 𝑈𝑔
𝑚0 ⊕𝑈𝑔

𝑚1 ⊕𝑈𝑔
𝑚2 ⊕...

• One mass eigenstate of the atom behaves 
as an "elementary" system.

2nd excited state
1st excited state
ground state

H

Pc



Q2: What is the physical meaning of reducible representations 
of the Poincaré group? (continued)

• Representation matrices have block-diagonal form, so state vector cannot 
leave irreducible subspace.

0

0 𝑈𝑔
𝑚0

𝑈𝑔
𝑚2

𝑈𝑔
𝑚1 =

𝑈𝑔| ۧΨ =      | ۧΨ′



Q3: What is the physical meaning of Casimir operators?



Q3: What is the physical meaning of Casimir operators?
• Casimir operators 𝑀2 (mass squared) and 𝑆2 (spin squared) commute with all 

10 generators of the Poincaré group. 
• This means that these operators remain invariant under all inertial 

transformations, e.g.

𝑒−𝑖𝑷∙𝐱/ℏ 𝑀2 𝑒𝑖𝑷∙𝐱/ℏ = 𝑀2 (space translations)

𝑒−𝑖𝑱∙ϕ/ℏ𝑀2𝑒𝑖𝑱∙ϕ/ℏ = 𝑀2 (rotations)

𝑒−𝑖𝑐𝑲∙θ/ℏ 𝑀2 𝑒𝑖𝑐𝑲∙θ/ℏ = 𝑀2 (boosts)
𝑒𝑖𝐻t/ℏ 𝑀2 𝑒−𝑖𝐻t/ℏ = 𝑀2 (time translations)

• This means that observables 𝑀2 and 𝑆2 have the same values (spectrum) for all 
inertial observers.

• These are true intrinsic observer-independent properties of the system.
• There are other intrinsic properties, like charge, flavor, etc. But they are not 

related to space and time symmetries. They are related to the way particles 
interact with each other.



Q4: How come that electron's wave function has 2 components, but Dirac's field 
has 4 components?



Q4: How come that electron's wave function has 2 components, but Dirac's field 
has 4 components?
• Electron's wave function ψ𝜎 𝒑 (or its position-space analog ψ𝜎 𝒓, 𝑡 ) and 

Dirac's quantum field Ψ𝑖 𝒙, 𝑡 are two completely different objects. They are 
different both physically and mathematically.

• Let's return to this question in Lecture 4 after studying Weinberg's method for 
introducing quantum fields.



Exercise 1: Prove that identity

𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵 = 𝐴 + 𝑡 𝐵, 𝐴 +
𝑡2

2!
𝐵, 𝐵, 𝐴 + ⋯

is valid for any two operators 𝐴, 𝐵 and number 𝑡



Exercise 1: Prove 𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵 = 𝐴 + 𝑡 𝐵, 𝐴 +
𝑡2

2!
𝐵, 𝐵, 𝐴 +⋯

Plan:
1. First check that both sides of this identity satisfy the same differential 
equation

Τ𝑑𝑋 𝑑𝑡 = 𝐵, 𝑋 = 𝐵𝑋 − 𝑋𝐵 (1)
2. Check that both sides coincide at initial condition 𝑡 = 0.

1a. Take 𝑡-derivative of the left hand side
Τ𝑑 𝑑𝑡 𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵 = Τ𝑑 𝑑𝑡 𝑒𝑡𝐵 𝐴 𝑒−𝑡𝐵 + Τ𝑒𝑡𝐵𝐴 𝑑 𝑑𝑡 𝑒−𝑡𝐵

= 𝐵𝑒𝑡𝐵 𝐴 𝑒−𝑡𝐵 − 𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵𝐵
= 𝐵 𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵 − 𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵 𝐵

1b. Take 𝑡-derivative of the right hand side

Τ𝑑 𝑑𝑡 𝐴 + 𝑡 𝐵, 𝐴 +
𝑡2

2!
𝐵, 𝐵, 𝐴 + ⋯ = 𝐵, 𝐴 + 𝑡 𝐵, 𝐵, 𝐴 + ⋯

= 𝐵, 𝐴 + 𝑡 𝐵, 𝐴 +
𝑡2

2!
𝐵, 𝐵, 𝐴 +⋯



Exercise 1: Prove 𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵 = 𝐴 + 𝑡 𝐵, 𝐴 +
𝑡2

2!
𝐵, 𝐵, 𝐴 +⋯

2. Check that both sides coincide at initial condition 𝑡 = 0.

2a. 𝑒𝑡𝐵𝐴 𝑒−𝑡𝐵
𝑡→0

𝐴

2b. 𝐴 + 𝑡 𝐵, 𝐴 +
𝑡2

2!
𝐵, 𝐵, 𝐴 + ⋯

𝑡→0
𝐴



Exercise 2: How do components of momentum transform under rotations?



Exercise 2: How do components of momentum transform under rotations?
• Generator of rotations about z-axis is the z-component of the total angular 

momentum 𝐽𝑧 .
• The x-component of momentum 𝑃𝑥 transforms as

𝑃′𝑥 = 𝑒−𝑖𝐽𝑧ϕ/ℏ𝑃𝑥𝑒
𝑖𝐽𝑧ϕ/ℏ

• Useful formula valid for any non-commuting 𝐴 and 𝐵

𝐴′ = 𝑒𝑖𝐵𝐴 𝑒−𝑖𝐵 = 𝐴 + 𝑖 𝐵, 𝐴 −
1

2!
𝐵, 𝐵, 𝐴 + ⋯

We will use this formula very often!
• Then

𝑃′𝑥 = 𝑃𝑥 −
𝑖ϕ
ℏ
𝐽𝑧, 𝑃𝑥 −

ϕ2

2!ℏ2
𝐽𝑧 , 𝐽𝑧 , 𝑃𝑥 +

𝑖ϕ3

3!ℏ3
𝐽𝑧 , 𝐽𝑧 , 𝐽𝑧 , 𝑃𝑥 …



Exercise 2: How do components of momentum transform under rotations?
(continued)
• The necessary commutators will be taken from the Lie algebra 

representation

• Here we have the Levi-Civita symbol
𝜖𝑥𝑦𝑧 = 𝜖𝑦𝑧𝑥 = 𝜖𝑧𝑥𝑦 = 1

𝜖𝑦𝑥𝑧 = 𝜖𝑥𝑧𝑦 = 𝜖𝑧𝑦𝑥 = −1

𝜖𝑖𝑗𝑘 = 0 in all other cases

• Therefore
𝐽𝑧, 𝑃𝑥 = 𝑖ℏ𝜖𝑧𝑥𝑦𝑃𝑦 = 𝑖ℏ𝑃𝑦
𝐽𝑧 , 𝑃𝑦 = 𝑖ℏ𝜖𝑧𝑦𝑥𝑃𝑥 = −𝑖ℏ𝑃𝑥



𝑃′𝑥 = 𝑃𝑥 + ϕ𝑃𝑦 −
ϕ𝟐

2!
𝑃𝑥 −

ϕ3

3!
𝑃𝑦 +⋯

= 𝑃𝑥 1 −
ϕ𝟐

2!
+ ⋯ + 𝑃𝑦 ϕ −

ϕ3

3!
+ ⋯

= 𝑃𝑥 cosϕ + 𝑃𝑦 sinϕ

• Conclusion: momentum transforms as a vector under rotations.

Exercise 2: How do components of momentum transform under rotations? 
(continued)



Exercise 3: Show that energy-momentum 𝐻, 𝑐𝑃𝑥 , 𝑐𝑃𝑦 , 𝑐𝑃𝑧 form components 

of a relativistic 4-vector.



Exercise 3: Show that energy-momentum 𝐻, 𝑐𝑃𝑥 , 𝑐𝑃𝑦 , 𝑐𝑃𝑧 form components 

of a relativistic 4-vector.
• Check transformations with respect to the boost along x-axis

𝐻′ = 𝑒−𝑖𝑐𝐾𝑥θ/ℏ𝐻𝑒𝑖𝑐𝐾𝑥θ/ℏ

𝑃𝑥
′ = 𝑒−𝑖𝑐𝐾𝑥θ/ℏ 𝑃𝑥𝑒

𝑖𝑐𝐾𝑥θ/ℏ

𝑃𝑦
′ = 𝑒−𝑖𝑐𝐾𝑥θ/ℏ 𝑃𝑦𝑒

𝑖𝑐𝐾𝑥θ/ℏ = 𝑃𝑦

𝑃𝑧
′ = 𝑒−𝑖𝑐𝐾𝑥θ/ℏ 𝑃𝑧𝑒

𝑖𝑐𝐾𝑥θ/ℏ = 𝑃𝑧
• Use Poincaré commutators

𝐾𝑥 , 𝑃𝑥 = Τ−𝑖ℏ 𝑐2𝐻
𝐾𝑥 , 𝐻 = −𝑖ℏ𝑃𝑥



Exercise 3: Show that energy-momentum 𝐻, 𝑐𝑃𝑥 , 𝑐𝑃𝑦 , 𝑐𝑃𝑧 form components 

of a relativistic 4-vector. (continued)
• Use our standard formula

𝐻 θ = 𝑒−𝑖𝑐𝐾𝑥θ/ℏ𝐻𝑒𝑖𝑐𝐾𝑥θ/ℏ

= 𝐻 −
𝑖𝑐θ
ℏ

𝐾𝑥 , 𝐻 −
𝑐2θ2

2!ℏ2
𝐾𝑥 , 𝐾𝑥 , 𝐻 +

𝑖𝑐3θ3

3!ℏ3
𝐾𝑥 , 𝐾𝑥 , 𝐾𝑥 , 𝐻 +⋯

= 𝐻 − 𝑖𝑐θ −𝑖 𝑃𝑥 −
𝑐2θ2

2!
−𝑖 −𝑖/𝑐2 𝐻 +

𝑖𝑐3θ3

3!
−𝑖 2 −𝑖/𝑐2 𝑃𝑥 +⋯

= 𝐻 1 +
θ2

2!
+ ⋯ − 𝑐𝑃𝑥 θ +

θ3

3!
+ ⋯

= 𝐻 coshθ − 𝑐𝑃𝑥 sinhθ

𝑐𝑃𝑥 θ = 𝑐𝑒−𝑖𝑐𝐾𝑥θ/ℏ 𝑃𝑥 𝑒
𝑖𝑐𝐾𝑥θ/ℏ

= 𝑐𝑃𝑥 coshθ − 𝐻 sinhθ



Exercise 3: Show that energy-momentum 𝐻, 𝑐𝑃𝑥 , 𝑐𝑃𝑦 , 𝑐𝑃𝑧 form components 

of a relativistic 4-vector. (continued)
• Take into account that 

tanh θ = Τ𝑣 𝑐

cosh θ =
1

1 − Τ𝑣2 𝑐2

sinh θ =
Τ𝑣 𝑐

1 − Τ𝑣2 𝑐2

• Then transformations assume a more familiar Lorentz form

𝐻 θ =
𝐻 − 𝑣𝑃𝑥

1 − Τ𝑣2 𝑐2

𝑐𝑃𝑥 θ =
𝑐𝑃𝑥 − 𝐻 Τ𝑣 𝑐

1 − Τ𝑣2 𝑐2



Exercise 4: Show that mass squared 𝑀2 = 𝐻2 − 𝑃2𝑐2 /𝑐4 is a Casimir 
operator.



Exercise 4: Show that mass squared 𝑀2 = 𝐻2 − 𝑃2𝑐2 /𝑐4 is a Casimir 
operator

• Check commutators with translation generators

Therefore 𝑀2, 𝑃𝑖 = 𝑀2, 𝐻 = 0.



Exercise 4: Show that mass squared 𝑀2 = 𝐻2 − 𝑃2𝑐2 /𝑐4 is a Casimir 
operator

• Check commutators with translation generators

Therefore 𝑀2, 𝑃𝑖 = 𝑀2, 𝐻 = 0.
• Check commutators with generators of rotations:

Therefore 𝑷 is a 3-vector and 𝑃2 is a scalar w.r.t. rotations.
𝑀2, 𝐽𝑖 = 0



Exercise 4: Show that mass squared 𝑀2 = 𝐻2 − 𝑃2𝑐2 /𝑐4 is a Casimir 
operator (continued).

• Check boost transformation:

𝑐4𝑀2 θ = 𝑒−𝑖𝑐𝐾𝑥θ/ℏ 𝐻2 − 𝑃2𝑐2 𝑒𝑖𝑐𝐾𝑥θ/ℏ

= 𝐻 θ 2 − 𝑃 θ 2𝑐2

= 𝐻 coshθ − 𝑐𝑃𝑥 sinhθ
2 − 𝑐𝑃𝑥 coshθ − 𝐻 sinhθ 2 − 𝑐2𝑃𝑦

2 − 𝑐2𝑃𝑧
2

= 𝐻2 cosh2θ − sinh2θ − 𝑐2𝑃𝑥
2 cosh2θ − sinh2θ − 𝑐2𝑃𝑦

2 − 𝑐2𝑃𝑧
2

= 𝐻2 − 𝑃2𝑐2 = 𝑐4𝑀2

• This proves that
𝑀2, 𝐾𝑖 = 0



Exercise 5: Build Hilbert space H of a massive spinless representation of the 

Poincaré group.



Exercise 5: Build Hilbert space H of a massive spinless representation of the 

Poincaré group.
• Among Poincaré algebra generators there are three mutually commuting 

operators 𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧 , 𝐻

• They have common sets of eigenvectors forming an orthonormal basis in 

the Hilbert space | ൿ𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 .

• Next, let us prove that the spectrum of 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 occupies the entire 3D 

momentum space



Exercise 5: Build Hilbert space H of a massive spinless representation of the 

Poincaré group.

• Suppose that there is one eigenvector | ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧 ∈H such that

𝑃𝑥| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧 = 𝑝0𝑥| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧
𝑃𝑦| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧 = 𝑝0𝑦| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧
𝑃𝑧| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧 = 𝑝0𝑧| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧

• Act on this vector by the rotation operator

𝑒𝑖𝐽𝑧ϕ/ℏ| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧

𝒑0

𝑝𝑥

𝑝𝑦



Exercise 5: Build Hilbert space H of a massive spinless representation of the 

Poincaré group.
• The resulting vector is also an eigenvector of momentum

𝑃𝑥 𝑒𝑖𝐽𝑧ϕ/ℏ| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧 = 𝑒𝑖𝐽𝑧ϕ/ℏ𝑒−𝑖𝐽𝑧ϕ/ℏ 𝑃𝑥𝑒
𝑖𝐽𝑧ϕ/ℏ| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧

= 𝑒𝑖𝐽𝑧ϕ/ℏ 𝑒−𝑖𝐽𝑧ϕ/ℏ𝑃𝑥𝑒
𝑖𝐽𝑧ϕ/ℏ | ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧

= 𝑒𝑖𝐽𝑧ϕ/ℏ 𝑃𝑥 cosϕ + 𝑃𝑦 sinϕ | ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧

= 𝑒𝑖𝐽𝑧ϕ/ℏ 𝑝0𝑥 cosϕ + 𝑝0𝑦 sinϕ | ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧

= 𝑝0𝑥 cosϕ + 𝑝0𝑦 sinϕ 𝑒𝑖𝐽𝑧ϕ/ℏ| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧

𝑃𝑦 𝑒𝑖𝐽𝑧ϕ/ℏ| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧 = 𝑝0𝑥 sinϕ + 𝑝0𝑦 cosϕ 𝑒𝑖𝐽𝑧ϕ/ℏ| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧

𝑃𝑧 𝑒𝑖𝐽𝑧ϕ/ℏ| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧 = 𝑝0𝑧 𝑒𝑖𝐽𝑧ϕ/ℏ| ൿ𝑝0𝑥 , 𝑝0𝑦 , 𝑝0𝑧



𝒑0

𝑝𝑥

𝑝𝑦

Exercise 5: Build Hilbert space H of a massive spinless representation of the 

Poincaré group.

• Vector | ۧ𝒑′0 = 𝑒𝑖𝐽𝑧ϕ/ℏ| ۧ𝒑0
belongs to the same irreducible space H

• Then all vectors on the sphere with radius 𝒑0 also
belong to the subspace H of the irreducible 

representation
• Using the same arguments for vectors

| ۧ𝒑′′0 = 𝑒𝑖𝑐𝐾𝑥θ/ℏ | ۧ𝒑0
one can prove that all possible eigenvectors of 𝑷 are
in the Hilbert space H

𝒑′0



Exercise 5: Build Hilbert space H of a massive spinless representation of the 

Poincaré group.
• Hamiltonian 𝐻 also commutes with the three components of momentum

• however ℎ is not an independent eigenvalue, because in an irreducible 
representation (𝑚 = 𝑐𝑜𝑛𝑠𝑡 > 0)

ℎ = + 𝑝2𝑐2 +𝑚2𝑐4

• Wave functions ψ 𝑝𝑥 , 𝑝𝑦 , 𝑝𝑧 in the momentum representation can be 

regarded as functions on the "mass shell hyperboloid".
• We will see how these wave functions transform w.r.t. Poincaré group 

elements in a separate exercise.



Thank you!


