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1 Overview

� Flavors, quarks and the early history of isospin

� Isospin symmetry transformations

� Up and down quarks

� Baryons

� Mesons

2 Flavors, quarks and the early history of

isospin

� 1932: James Chadwick’s experiments show that atomic cores include
new neutral particles that Chadwick calls neutrons and which have
the same mass as protons.

� 1932: Heisenberg hypothesizes that a neutron and proton are two quan-
tum states of a single particle, the nucleon. This is a non-trivial state-
ment as shown here:

– It means we can construct two different quantum states (sym-
metric and antisymmetric)

|ψS〉 = |p〉+ |n〉 (1)

and
|ψA〉 = |p〉 − |n〉. (2)
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– How can we tell that the two states are different? Consider an
observable O. It should be possible to measure its expectation
value in each of the two states:

〈ψS|O|ψS〉 = (〈p|+ 〈n|)O (|p〉+ |n〉)
= (〈p|O|p〉+ 〈n|O|n〉) + (〈p|O|n〉+ 〈n|O|p〉),

(3)

and

〈ψA|O|ψA〉 = (〈p| − 〈n|)O (|p〉 − |n〉)
= (〈p|O|p〉+ 〈n|O|n〉)− (〈p|O|n〉+ 〈n|O|p〉).

(4)

Because of the relative minus sign, the two expectation values are
different. That’s called coherence and is different than you’d see
with a classical mix of two different particles.1

– A key consequence of this idea, is that there must be an observ-
able for which the symmetric and antisymmetric states
have different eigenvalues. This consequence is thoroughly
baked into the quantum mechanics of every two-particle state re-
gardless of the particle properties. In that sense, every particle is
an alternate “state” of every other particle. But in 1932, these
ideas were new and it seemed as though the proton and neu-
tron were more or less “the same” particle. In modern times,
we’ve come to understand this “similarity” as a manifestation of
symmetry between states.

� 1932 - ≈1948:

– Experiments and theoretical analysis show that interactions in-
volving neutrons and protons, as inferred from nuclear energy
states for various atoms, and also from scattering data, obey the
isospin symmetry.

– Wigner clarifies the group structure.

– Yukawa hypothesizes (1935) that neutrons and protons are bound
by a strong force whose origin is a meson field, with a meson
of mass around 100 MeV. The mesons are discovered in the late
1940’s and called pions. They are assigned the isospin values re-
quired for isospin symmetry. Subsequently, pion-pion and pion-
nucleon interactions are shown to obey the constraints of isospin
symmetry.

1Notice that this argument fails if we can’t find an operator O so that 〈n|O|p〉 6= 0.
This situation would be called a superselection rule and is a fancy way of saying something
does NOT behave in a quantum way.
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� 1944-1953: Various particle tracks are found and analyzed to be dif-
ferent (and heavier) than pions, muons etc. By 1953, these become
known as K-mesons. In 1953, Gell-Mann and collaborators hypothe-
size that the properties of K-meson interactions can be explained by a
new conservation law that conserves a quantity they call strangeness.

� 1961: Gell-Mann and (independently) Ne’eman propose that strangeness-
conservation is associated with a symmetry embedded in a larger sym-
metry group that includes isospin. The larger symmetry group is
SU(3). This symmetry is used to predict the existence of a new particle
named the Ω−. That is experimentally discovered in 1964.

� 1964: Gell-Mann and (independently) Zweig hypothesize that the par-
ticle Hilbert space should include the fundamental representation of
SU(3) in much the way that the rotation group admits a spin-half
representation (up to a phase). The representation is comprised of 3
particles that Gell-Mann called quarks.

� 1964: The 3 quarks are called “up”, “down” and “strange”, and each
has an associated anti-quark. All hadrons are composed of combina-
tions of those quarks and their anti-quarks. (The term “baryon” refers
to hadrons made of 3 quarks or 3 anti-quarks and the term “meson”
refers to hadrons made of a quark and anti-quark.) Most properties
that can be inferred from the quark picture can also be inferred from
the SU(3) symmetry

� 1964-1970: Glashow et al. hypothesize a symmetry relationship be-
tween quarks and leptons (electrons, neutrinos, muons) but which re-
quires a 4th quark that they call “charm”. Charmed mesons are ex-
perimentally observed in 1974.

� 1973: Politzer, Gross and Wilczek discover that QCD, which is the
prevailing candidate field theory of strong interactions, has the prop-
erty of asymptotic freedom. In brief, this property makes it possible
to apply QCD perturbation theory for processes involving large energy
exchanges (e.g. deep inelastic scattering). For the first time, it be-
comes possible to predict and measure the hypothesis that quarks are
constituents of nucleons etc. Since then, high precision experiments,
combined with high-precision perturbative expansions, have shown a
fantastic of the quark-constituent model.
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� 1973: Kobayashi and Maskawa, as a result of analyzing weak interac-
tions between quarks and leptons, predict two more quarks, “top” and
“bottom”.

The type of quark (there are 6 types) is known as FLAVOR. The
original SU(3) symmetry has become an SU(6) symmetry. At this
time, based on the bandwidth of the Z-meson, it is believed that
there are no other flavors. The original isospin is associated with
the up and down quarks.

3 Isospin symmetry transformations

3.1 Thomson 9.1 – Brief review of symmetries in QM

� A symmetry group is a set of transformations that preserve the form
of equations of motion or a Lagrangian.

� In QM, a symmetry g is implemented as unitary transformation

|ψ〉 → U(g)|ψ〉. (5)

and the symmetry group is represented by the rule

U(g1 ◦ g2) = U(g1)U(g2) (6)
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� By convention, an internal symmetry is a symmetry that commutes
with all the Poincaré symmetries. In particular,

[H,U(g)] = 0. (7)

This commutation relationship implies that system-evolution (remem-
ber, the system evolves with H via the Schrodinger equation) obeys
symmetry relationships, and also that energy/mass eigenvalues are
grouped in patterns related to the group representations.

� When it makes sense to speak of “closeness” of two group elements (for
example, rotation by 0.001 radians is less than rotation by 0.1 radians),
then (subject to certain mathematical assumptions) we can write

U(ε) = I + iεG (8)

for some self-adjoint operator G known as an infinitesimal generator
of the group. In general, the collection of G’s is known as the Lie
Algebra of the group. A basis can be found for the Lie Algebra and
the commutation relations of that basis can be used to find relevant
relationships between symmetry transformations.

3.2 Thomson 9.2 – Isospin-1/2 representations

3.2.1 Neutrons and protons

Represent the proton and neutron in the same form we represent spin up and
spin down for an electron. Namely,

|p〉 ↔
(

1
0

)
, |n〉 ↔

(
0
1

)
The superposition of a proton and neutron is then represented by a linear
combination of the two vectors. Thomson’s notation, although com-
mon, is mathematically ambiguous. I’ll use different notation, but
see Thomson for the more common approach. A general nucleon state

can be thought of as α|p〉+ β|n〉 and is then represented by

(
α
β

)
. An SU(2)

symmetry is implemented as (
α′

β′

)
= U

(
α
β

)
(9)

where U is a special (determinant 1) 2 x 2 unitary matrix.
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We studied these transformations when we were studying spin (hence
the name “isospin”) and learned that the most general such matrix can be
written as

U = eiα·T (10)

where α ·T ≡ α1T1 + α2T2 + α3T3 and Ti = σi
2

. The σi are the usual Pauli
spin matrices.

In summary, a neutron and proton are two states of an isospin doublet
(analogous to spin-up/spin-down). In field theory, the neutron and proton
fields are two components of an isospin doublet.

3.2.2 Consequences of isospin symmetry

Remember that all of this started by the desire to construct a theory of
strong interactions, which is invariant under isospin transformations. From
our general theory of symmetries, that means [H,U ] = 0. From this it can
be shown that all states in the doublet representation (i.e., combinations
of neutron and proton, or combinations of up and down) have the same
energy/mass.

In particular, the neutron and proton have the same mass. Also the up
and down have the same mass.

Note that only the strong interactions are isospin-invariant. However,
weak and electromagnetic interactions are not. So there are perturbative
corrections (because weak and EM are both small) to any isospin-based con-
clusions.

WARNING: The last few sentences of Thomson 9.2.1 make
some claims that I dispute. In particular, Thomson says that “it
does not make sense to form states which are linear combinations
of the two ...”. I don’t agree, and think that he is confusing some
concepts here.

3.2.3 Isospin algebra and isospin labels

The isospin algebra is just the SU(2) algebra which we’ve encountered when
studying the rotation group. When we spoke of rotations, we used the angular
momentum symbol J. When we speak of isospin, we’ll use the symbol T.
Mathematically they are identical, but we use different letters to distinguish
context.

When dealing with rotations, there were two operators used to character-
ize all states in an irreducible representation (such as a spin-1/2 representa-
tion). The total isospin operator is the group Casimir operator (see Eugene’s
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notes for more about Casimir operators). It is

T2 = T2
1 + T2

2 + T2
3. (11)

The other operator used for characterizing states is T3. We then write the
isospin content of any state as |...I, I3 > such that

T2|...I, I3 > = I(I + 1)|...I, I3 >
T3|...I, I3 > = I3|...I, I3 > .

(12)

The dots indicate other quantum numbers such as 4-momenta or angular
momenta etc.

This notation is reminisce of the notation we use for angular momentum.
The neutron and proton both have I = 1/2, meaning that they belong to the
same 2-dimensional (spin 1/2) multiplet. The proton has I3 = +1/2 and the
neutron has I3 = −1/2. Similarly, the up quark has I3 = +1/2 and the down
quark has I3 = −1/2.

3.2.4 Up and Down quarks

Recall that quark fields were introduced by Gell-Mann and Ne’eman as mem-
bers of the fundamental representation of SU(3) (and later, with the discovery
of more flavors, they were deemed members of the representation of SU(N)
where N is the number of quark flavors).

The “up” and “down” quarks transform into one another under the SU(2)
subgroup of SU(3). This subgroup is the isospin group. So we can follow
precisely the same steps as for the neutron and proton. A general up-down

quark state can be thought of as α|u〉+β|d〉 and is then represented by

(
α
β

)
.

An SU(2) symmetry for quarks is implemented as(
α′

β′

)
= U

(
α
β

)
. (13)

3.3 Building protons and neutrons from quarks

The isospin quantum numbers of the nucleons are

� p: (I, I3) = (1
2
,+1

2
),

� n: (I, I3) = (1
2
,−1

2
).

Similarly, the isospin quantum numbers of the up and down quarks are
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� u: (I, I3) = (1
2
,+1

2
),

� d: (I, I3) = (1
2
,−1

2
).

The up and down quark have almost the same mass. Each nucleon is a bound
state of 3 quarks. The proton is “uud” and the neutron is “ddu”. If you add
up the I3 quantum numbers for up and down quarks, you see that the proton
and neutron end up with the correct values of I3. The small difference in
mass between the neutron and proton is, in part, due to the small mass
difference between the up and down quarks.

3.3.1 Quarks or SU(N)-flavor symmety?

I added this section after a Physics Group discussion on the topic. First
a definition: What I’ve been describing up to now as SU(3) and then later
SU(N) for N flavors of quark, I’ll now call SU(N)-flavor. This nomenclature is
distinct from an entirely different set of symmetries whose strong-interaction
subgroup is SU(3). We call that symmetry SU(3)-color, but just like SU(3)-
flavor, modern physics has expanded SU(3)-color to larger groups such as
SU(5) and SO(10). For the time being, there is no relationship between the
color and flavor symmetries.

I made the comment that after the introduction of the quark idea, it
was no longer necessary to think about SU(2)-flavor or SU(3)-flavor, because
everything that could be derived from the group theoretic analysis, could
be more easily derived just by considering quarks. After further discussion,
I’ve come to the conclusion that I mis-spoke. I now realize that my views
are a consequence of the path my research has taken over the years. It may
be worth my while, some day, to carefully examine alternatives. For now, I
think the following may be helpful, especially to those of you who are fond
of group theory!

Consider a quantum theory of quarks that can be described by a field
theory whose interaction terms are independent of flavor. This theory, what-
ever it is, can be examined in the non-relativistic limit in much the same way
that QED can be examined in the non-relativistic limit. Whatever calcula-
tions are performed can then be organized into terms that involve the quark
masses, and terms that don’t. Those that don’t, are entirely independent
of quark flavor. Those that do, can be further organized into those terms
whose mass-dependencies are identical to one another. Imagine, for example,
a Taylor expansion in the quark-mass. Then flavor-symmetry would amount
to saying that the coefficients of the Taylor expansion are flavor-independent.

Thus flavor-symmetry constrains the possible forms of bound-state energy
distributions, and the possible-form of scattering amplitudes. This kind of
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thing can be analyzed using group representation facts, or can be analyzed
by brute force. In just the same way that spherical symmetry and repre-
sentations have been used for more than a century as a way of simplifying
the solutions of differential equations, so isospin (and SU(N)-flavor) sym-
metry representations can be used to simplify the QFT solutions for flavor
interactions.

3.4 What can we learn from Feynman diagrams?

In the period from 1932 to about 1948, the theory of strong interactions
was brought into modern field-theoretic form. Initially, the Hamiltonian was
described using a matrix that transformed the neutron-proton doublet state.
In modern notation, we would write the most general interaction Hamiltonian
transformation in shorthand form as

HI =

(
α11 α12

α21 α22

)
(14)

so that (
p′

n′

)
=

(
α11 α12

α21 α22

)(
p
n

)
(15)

If our only experimental information is that the Hamiltonian transforms
the pure proton state into a pure neutron state, in the same way that it
transforms a pure neutron state into a pure proton state, then we could
describe this in field-theoretic notation as

H0
I = αn̄p+ α∗p̄n (16)

where the operators n and p are Dirac fields representing the neutron and
proton and the α is a coefficient. Now, by analogy with QED, we might spec-
ulate that there is another field that is responsible for the strong force, and
that this field would appear in the interaction Hamiltonian, in a way simi-
lar to how the electromagnetic field appears in the interaction Hamiltonian
for QED. Putting this altogether, and writing it in Lagrangian language, we
obtain an interaction Lagrangian

L0
I(x) = −αn̄pπ− − α∗p̄nπ+ (17)

where now we’ve now replaced the coefficient α with απ− and α∗ with
α∗ (π−)

∗
. We generally rewrite (π−)

∗
as π+. The Lagrangian would imply a

leading-order Feynman diagram like this:
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n n

p p

π0

n p

p n

π±

The blue line, like the photon in EM interactions, is responsible for the
strong force. We call π+ and π−, the (charged) pion fields. What do we know
about the charge pion and its interactions?

� We see that top vertex is the same as the bottom vertex thus im-
plementing the fact that the strong force doesn’t distinguish between
proton and neutron.

� Since there is an overall charge-conservation law, and each of the top
and bottom lines change charge, then the exchanged line must be
charged. Hence the notation π±.

� If you scatter two protons, then the vertices (which have one neutron
leg and one proton leg) would force the outgoing particles to both be
neutrons (and that would violate charge conservation). Thus protons
could not scatter strongly from one another (they could only scatter
weakly through electromagnetism). More generally, there would be no
strong force between one proton and another. None of this agrees with
experiment. So this Lagrangian must be incomplete.

� The blue line represents a propagator. We “say” that the line is a
“virtual pion exchange” and we then compute the contribution of the
propagator. The result can be compared to a scattering experiment.

� Since the particles on top both have spin-1/2, then the group rules for
rotational invariance require that the pions either have spin 0 (scalar
particle) or spin 1 (vector particles). Scattering behavior can distin-
guish the two, and we find that the pions are scalars.

� As we saw on page 165 of Thomson, in the discussion of Rutherford
scattering, the low-energy scattering calculated from the (massless)
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photon propagator, is the same as what can be computed using the
Coulomb potential. That is,

α
1

q2
↔ α

1

r
. (18)

More generally, for massive particles, the propagator is proportional to
1

q2−m2 , which corresponds to a potential

V (r) =
e−mr

r
. (19)

This is a short-range force, and Yukawa deduced from experiments that
m ≈ 100 MeV.

� In summary, the Feynman diagram, together with some experimen-
tal data, leads to a hypothesis that the blue line corresponds to the
existence of a charged scalar particle whose mass is about 100 MeV.
Experimentally, the pion has a mass of about 140 MeV.

We concluded above that the Lagrangian was incomplete. Another term
which is invariant under the exchange of n with p is

H±I = α (n̄n+ p̄p) π0 (20)

where both α and π0 are real. The corresponding Feynman diagram is:

n n

p p

π0

n p

p n

π±

By conservation of charge, we find that π0 is neutral. Over the period of
1932-1948, experimental data confirmed the invariance of strong interactions
under isospin transformations of the neutron-proton states. We see that there
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are 3 pions and that the general interaction term is a linear combination of
terms with 2 nucleons and 1 pion. Thus the strong-interaction vertex is an
isospin-invariant function of the form

LI =
∑
ijk

βijkN̄iπjNk + cmplx-conj. (21)

In this expression, the N indices denote either a neutron or proton, and the
π index denotes either a charged or neutral pion. Coefficients βijk must be
chosen so that the Lagrangian is isospin invariant. We already know that
the nucleons transform as a 2D representation of the isospin group i.e., the
‘spin-1/2’ representation of SU(2). By the laws of group representations,
the pions must therefore transform in a combination of spin-0 and spin-1
representations of SU(2). Otherwise it wouldn’t be possible to find a set of
βijk to make the Lagrangian invariant under SU(2)-isospin. Since we know
there are at least 3 pions involved in the strong interaction, we can conclude
that they form an isospin-1 representation.

It seems plausible that one could also construct a term involving 2 nu-
cleons and an isospin-0 field different from the pion. In fact, such a particle
was discovered and called η. From the above arguments, that particle must
be neutral.

3.5 Decay rates and isospin representation theory

This section departs slightly from Thomson but is inspired by Thomson Prob-
lem 9.3.

By considering the isospin states, show that the rates for the
following strong interaction decays occur in the ratios

Γ(∆++ → π+p) : Γ(∆0 → π−p) = 3 : 1 (22)

etc.
The method we’ll use to analyze this2, is typical of the methods used since

the 60’s, of using Lagrangian symmetries to find ratios of masses, scattering
amplitudes and decay rates. Also notice that these kinds of predictions can-
not be obtained (at least not easily) by simply considering that ‘ordinary’
particles are made of two kinds of quarks (up and down).

2I believe that Thomson was intending to have us solve probem 9.3 by considering
states rather than fields but the method is similar and I prefer to stick with fields.
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3.5.1 How to build isospin-invariant Lagrangians

Recall eq. (21),

LI =
∑
ijk

βijkN̄iπjNk + cmplx-conj. (23)

What are the coefficients βijk so that LI is invariant under isospin transfor-
mations? Let’s unpack this question for the case where N−1/2 represents a
neutron, N+1/2 represents a proton, and π−1, π0, π1 represent respectively
π−, π0, π+1.

� Recall how isospin-1
2

and isospin-0 states transform under an isospin
transformation. The transformation rules are just like those for spin.
The isospin transformations are parametrized by parameters α, r̂ which
are abstract analogues of a rotation-angle θ and the unit axis-vector v̂.
So for example,

U(α, ê3) :

(
N 1

2

N− 1
2

)
→
(
e−i

α
2 0

0 ei
α
2

)( N 1
2

N− 1
2

)

U(α, ê3) :

 π1
π0
π−1

→
 cosα sinα 0
− sinα cosα 0

0 0 1

 π1
π0
π−1

 (24)

In general, the first matrix on the right will be described as M1/2(α, ê3)
and the second as M1(α, ê3). These matrices are known as isospin
representations.

� If we now apply these transformations to each of the three factors in
the terms of LI , we will arrive at a new expression. If we choose the
values of βijk appropriately, the new expression will equal the old one.
This is what we mean by an invariance.

The systematic way to find the βijk coefficients is via group representation
theory, and these kinds of coefficients are generically known as Clebsch-
Gordan coefficients. Often this kind of thing is done pairwise.

� First analyze a product of two factors, for example Niπj. This is also
known as a tensor product. In this example, there are a total of 6
pairs of indices (i, j) and therefore one can regard the terms Niπj as
the 6 components of a 6-vector. An isospin transformation acts for
example,

U(α, êa3) : Niπj →
∑
i′j′

M1/2(α, ê3)ii′M
1(α, ê3)jj′Ni′πj′

≡
∑

ζ(ij),(i′j′)Ni′πj′ .
(25)
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These are 6 x 6 linear transformations on 6-vectors. It is easy to see
that the transformations follow the group transformation properties
(e.g M1/2(α, ê3)M

1/2(α′, ê3) = M1/2(α + α′, ê3)).

� What we’ve seen is that a tensor-product of a 2-D and a 3-D repre-
sentation, is a 6-D representation. Is this representation reducible?
That is, is there a subset of the 6 terms so that the isospin transforma-
tions only act within that subset? This kind of thing is answered by
representation theory as:

1⊗ 1

2
=

3

2
⊕ 1

2
. (26)

Recall that the dimension of a representation with isospin number I,
is 2I + 1. The left hand side has dimension (3 x 2), and the right side
has dimension (4 + 2). So we see that the dimensions add up correctly.
What the equation means, is that there is one 4D subspace of the
6D space, which transforms to itself under the isospin transformations
(that is I = 3/2) and another 2D subspace transforming to itself (I =
1/2).

� Now we’re ready to consider the third factor in the products that appear
in the Lagrangian. Namely, we are now looking at (Niπj)Nk. The first
two factors are placed in a parenthesis to remind us that we have just
finished analyzing them in terms of their transformation properties.
We are going to use two facts from representation theory:

3

2
⊗ 1

2
= 2⊕ 1

1

2
⊗ 1

2
= 0⊕ 1.

(27)

Putting together eqs. (26) and (27) we get

(1⊗ 1

2
)⊗ 1

2
=

(
3

2
⊕ 1

2

)
⊗ 1

2

= (
3

2
⊗ 1

2
)⊕ (

1

2
⊗ 1

2
)

= 2⊕ 1⊕ 0⊕ 1.

(28)

� Thus, in the space of tensor products of two nucleons and a pion, there
is one subspace with isospin 0 – that is, a 1D subspace which is there-
fore invariant under isospin transformations. This is what we care
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about! In general, when constructing Lagrangians that are symmetry-
invariant, we use group-representation theory to discover invariant (aka
1D) subspaces of the tensor-product space. The βijk coefficients of eq.
(21) are precisely what is needed in order to construct the invariant
subspace.

3.5.2 Two examples of isospin-invariant Lagrangians

� In the last section, we saw that there was one set of β coefficients (up
to an overall constant) which can be used to create an isospin invariant
Lagrangian out of two nucleons and a pion. Here’s the group-theoretic
answer (instead of field notation like ψp I’ll simply write p for simplicity)

LI = k

[
p̄nπ+ + n̄pπ− − 1√

2

(
p̄pπ0 + n̄nπ0

)]
. (29)

where k is a constant (ultimately a coupling constant).

This is more or less what we guessed just from thinking about Feynman
diagrams, and from the historical development of isospin symmetry.
The coefficient − 1√

2
is the only thing we hadn’t yet guessed.

EXERCISE: Confirm, by directly doing the transformations,
that this Lagrangian is invariant under isospin transforma-
tions of each of the three fields.

In this next example, we’ll look at the isospin invariant term that involves
the tensor product of a nucleon, a pion and a decuplet-nucleon. We haven’t
previously encountered decuplet-nucleons. They were a set of 10 baryons,
heavier than the nucleons, and discovered in scattering experiments.

The decuplet-nucleons are unstable because they decay into nucleons and
pions. We’ll use isospin invariance to compute decay ratios. As before, we
consider the tensor product of the three kinds of particles. The decuplet is
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in the isospin representation I = 3/2, the nucleons are in the representation,
I = 1/2 and the pions are in the representation I = 1.

3

2
⊗ 1

2
⊗ 1 = 3⊕ 2⊕ 2⊕ 1⊕ 1⊕ 0 (30)

Again, as before, we only care about the scalar (1D) component with I = 0
and we see that there is a unique (up to a constant) combination of terms
which is invariant. This leads to

LI = k′

[
∆̄++pπ+ − ∆̄−nπ− − 1√

3

(
∆̄+nπ+ − ∆̄0pπ−

)
−
√

2√
3

(
∆̄+pπ0 − ∆̄0nπ0

)]
.

(31)

3.5.3 Decays of ∆’s

The Feynman decay diagrams look for example, like this:

∆++

p

𝜋+

𝑘′ഥ∆++𝑝𝜋+

∆0

p

𝜋−

𝑘′

3
ഥ∆0𝑝𝜋−

These diagrams are similar to one another and describe the decay of a ∆
into a pion and a nucleon. What is important is the vertex coefficient. For
the ∆++-decay, the coefficient is k′ and for the ∆0-decay, the coefficient is
k′/
√

3.
Therefore the ratio of decay amplitudes is

√
3 and the ratio of probabilities

is 3.
We therefore predict that the rate of decay of ∆++ → p + π+ is 3 times

the rate of decay of ∆0 → p+ π−.
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