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2 Preface: Color

s s

s
Ω−

So far, our quark model has been based on the idea that there are spin-
1
2

quarks of various flavors, whose bound states are the observed hadrons.
Qualitatively, this model was initially very successful at explaining particles
that had been observed by the early 60’s. But there was a serious glitch
(quite apart from the fact that no-one has ever seen an isolated quark). If
one assumed that the lowest-energy baryonic bound states (i.e., lowest-mass
baryons such as the proton and neutron) have 0 angular momentum (this
is the case for most potentials, such as the Coulomb potential), then the
overall baryon wave-function (taking into account spin, flavor and orbital
configuration) could not be antisymmetric. But that contradicts the
Pauli exclusion principle which requires fermionic wavefunctions
to be antisymmetric. A somewhat simplistic way of thinking about this,
is to consider the Ω meson, which has a spin state where the 3 strange quarks
all have spin-up. The Pauli exclusion principle would prohibit that, since it
isn’t possible to have two identical fermions (much less 3 particles) in the
same state. You might ask why the quarks had to be fermions, but by the
1960’s it was firmly established that a consistent field theory required that
spin-1

2
should be fermions.

BUT NOT QUITE! In a very readable review by Wally Greenberg, The
Origin of Quark Color, he explains how he’d been exploring the question of
whether any other kind of statistics was possible besides fermions and bosons.
He immediately applied his ideas to the mystery of baryon wave-function
anti-symmetry and postulated that instead of fermions, the quarks were para-
fermions of a certain type. Mathematically, his theory was equivalent to a
theory in which each quark came in 3 types which he called “color”. Once
he’d introduced color, he was then able to use wave-function anti-symmetry
(both for L = 0 bound states and higher-mass bound states) to predict mass
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patterns and other properties of many new baryons. Thomson, in section
9.4, goes into quite a bit of detail on how to construct baryon wave-functions
that take into account color, flavor, spin and space (e.g. orbitals).

Greenberg describes an early conversation he had with Oppenheimer, in
which he explained his idea of color.

When I asked him if he had read my paper, he said, “It’s beauti-
ful.” I was elated. My elation was, however, short-lived, because
Oppenheimer’s next statement was, “but I don’t believe a word
of it.”

Notwithstanding Oppenheimer, some physicists were drawn to Greenberg’s
idea and began to expand on it. Earlier, in 1954, Yang and Mills had ex-
plored the idea that strong interactions had an origin analogous to that of
the electromagnetic field. In the abstract to their paper, they said

The electric charge serves as a source of electromagnetic field; an
important concept in this case is gauge invariance which is closely
connected with (1) the equation of motion of the electromagnetic
field, (2) the existence of a current density, and (3) the possible
interactions between a charged field and the electromagnetic field.
We have tried to generalize this concept of gauge invariance to
apply to isotopic spin conservation.

However, the work of Yang and Mills on isotopic spin wasn’t able to be rec-
onciled with experiment, partly because they couldn’t propose a mechanism
that broke the symmetry (the proton and neutron have different masses).
The color property, as explained by Greenberg, was a complete (and unbro-
ken) symmetry of the theory. So after Greenberg’s introduction of color, the
idea of a color-generalization to gauge symmetry was revived by Han and
Nambu (in 1965). This theory, over time, became wildly successful.1 We
therefore begin with a thorough discussion of gauge symmetry as it appears

1There remains a question which puzzles me as well as others. Namely, why didn’t the
original Yang-Mills theory work, especially many decades later after a better understanding
of how symmetry-breaking can be accommodated in a gauge theory? In other words, why
does SU(3)-flavor (or more appropriately SU(6)-flavor) not generalize to a gauge theory
in the same way that SU(3)-color does? As far as I know, this question has been explored
but without any kind of convincing resolution. It’s all part of the more general exploration
of supersymmetrical and grand-unified theories. In my opinion, we need some convincing
reason why there are only 3 generations of particles, which appear to behave more or less
the same as one another.
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in classical and quantum electrodynamics, and then show how these ideas
become generalized following Yang and Mills.

3 The electromagnetic vector potential and

gauge invariance

We start with the classical theory. Maxwell’s equations:

∇×B− ∂tE = J

∇ · E = ρ

∇ ·B = 0

∇× E + ∂tB = 0

(1)

In this form, Lorentz invariance isn’t obvious. Instead, use an alternative
form. Define the electromagnetic field strength tensor Fµν as

Fµν =


0 −E1 −E2 −E3

E1 0 B3 −B2

E2 −B3 0 B1

E3 B2 −B1 0

 (2)

and the current 4-vector Jµ = (ρ, Jx, Jy, Jz).

Then Maxwell’s equations can be rewritten using ‘Lorentz covariant’ ten-
sors – i.e., tensors which, under a change of inertial frame undergo Lorentz
transformations.

∂µF
νµ = Jµ

∂µFνλ + ∂νFλµ + ∂λFµν = 0
(3)

4



These equations don’t have any different content than the original Maxwell
equations, but they are more apparently Lorentz invariant. (Note that we
obtained this manifest covariance at the expense of adding some redundancy
into the definition of Fµν . That often happens when exposing a hitherto
hidden symmetry.)

Early on (19th century) mathematicians and physicists introduced the scalar
potential φ and vector potential A as mathematical devices for simplifying
the solutions of electromagnetic equations. These can be combined into a
single 4-vector Aµ with the property that the electromagnetic field strength
tensor can be written as

Fµν = ∂µAν − ∂νAµ. (4)

Since the electric and magnetic fields are components of Fµν , this means
that the 4 components of the vector potential are sufficient to determine the
6 components of the electric and magnetic field.

Notice that there is a many-to-one correspondence between the
EM fields and the vector potentials. If two vector potentials are related
by

A
′

µ = Aµ − ∂µχ, (5)

for any scalar function χ(t,x), then it’s easy to see that the LHS of eq. (4)
is the same for both A and A′. That is, the E and B fields don’t depend
on χ. We call eq. (5) a gauge transformation. In classical EM,
all electromagnetic effects are given by the electric and magnetic
fields, so physics is independent of χ.

4 The vector potential in classical and quan-

tum theories

Classically, the electric and magnetic fields act on a particle by exerting a
force on the particle

F = q (E + v×B) (6)

What about the vector potential? Feynman addresses this in a beautiful
discussion in chapter 15 of Volume II of The Feynman Lectures. In chapter
15.4, he asks
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“Is the vector potential merely a device which is useful
in making calculations .. or is the vector potential a
“real” field? Isn’t the magnetic field the “real” field, because
it is responsible for the force on a moving particle? First we
should say that the phrase “a real field” is not very meaningful.
... What we mean here by a “real” field is this: a real field is a
mathematical function we use for avoiding the idea of action at
a distance ...A “real” field is then a set of numbers we specify in
such a way about that what happens at a point depends only on
the numbers at that point.”

Feynman then goes on to explain that in quantum mechanics, the idea of
force loses the central role it plays in classical physics. Instead, energy and
momentum and ultimately the vector potential, are more important.

This point was clarified in a surprising paper written in 1956 by Aharonov
and Bohm and explained by Feynman. They considered a solenoid.

The interior of the solenoid contains a magnetic field, but the exterior has
B = 0. Classically, a particle travelling on the exterior of the solenoid expe-
riences no effect since the magnetic force is 0. However, the vector potential
outside the solenoid can’t be 0. This follows from the fact that by Stoke’s
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theorem �
A · ds =

� �
(∇×A) · n̂dS =

� �
B · n̂dS. (7)

The LHS is the integral over a contour that surrounds the solenoid, whereas
the RHS is an integral over the surface enclosed by the contour. That surface
also encloses the solenoid and therefore the magnetic field inside the solenoid.
Since that magnetic field is non-zero, the LHS is non-zero and thus the vector
potential cannot be 0 everywhere outside the solenoid.

In quantum mechanics, the wave equation depends on the vector potential
and thus the particle evolution changes outside the solenoid even though no
magnetic field is present there.

Experiments ultimately confirmed the Aharonov-Bohm effect. Therefore, in
quantum mechanics, the magnetic field is not a “real” field in the sense
defined above. (Strictly speaking, using the definition of “real” field, the
vector potential also isn’t a “real” field since its local effects turn out to
depend on contour integrals.)

There are several ways of deriving the Aharonov-Bohm effect. One can start
with the modified Schrodinger equation.

i∂tψ =
1

2m
(−i∇− qA)2 ψ. (8)

We see that this equation involves the vector potential, rather than the mag-
netic field. About this, Feynman says

“This subject has an interesting history. The theory we have
described was known from the beginning of quantum mechanics
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in 1926. The fact that the vector potential appears in the wave
equation of quantum mechanics ... was obvious from the day it
was written. That it cannot be replaced by the the magnetic field
in any easy way was observed by one man after the other who
tried to do so.”

Another way of deriving the Aharonov-Bohm effect comes from the path
integral approach. This turns out to be the clearest derivation. Of course,
since the path integral is ultimately equivalent to the Schrodinger equation,
the derivations are equivalent to one another. Consider a particle going from
a point x = A to a point x = B over a period of time T . In the path integral
formulation, the probability amplitude for this process is given as

A =

�
Dx(t)eiS(x(t)), (9)

where the integral is taken over all paths from A to B, and the function
S is the action. For a non-relativistic particle under the influence of an
electromagnetic field, the action is

S =

�
dt

[
m

2
(
dx

dt
· dx
dt

) + qA · dx
dt

]
≡ S0+q

�
dt

(
A · dx

dt

)
= S0+q

� B

A

A·ds.

(10)
S0 is the free action. The path integral (probability amplitude) becomes

A =

�
Dx(t)eiS0(x(t))eq

�B
A A·ds. (11)

Now we wave our arms a bit. You may recall that one of the virtues of
the path integral, is that it bridges classical and quantum mechanics. The
dominant contribution to the path integral arises from the stationary paths –
i.e. those that satisfy the Euler-Lagrange equations. Other paths contribute
but are suppressed by factors of ~. In the double slit experiment illustrated
above, the dotted lines represent the dominant paths which can pass through
the two slits. Assume these are the only paths that matter so that

A ≈ eiS
1
0(x(t))eq

�
1 A·ds + eiS

2
0(x(t))eq

�
2 A·ds (12)

where the indices 1 and 2 refer to the upper and lower path respectively.
Generically this looks like A = eiφ1 + eiφ2 .

EXERCISE: Show that |A|2 = 2 [1 + cos(φ1 − φ2)] .

From this it follows that the probability depends on the vector potential only
as

�
2
A · ds−

�
1
A · ds.
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We see that �
2

A · dx−
�
1

A · dx =

�
A · ds (13)

where the contour surrounds the solenoid. But this is the same contour
integral we encountered in eq. (7) and it is non-zero because it surrounds
the solenoid’s magnetic field. Hence the process-probability depends on the
magnetic field even though the particle appears to travel only in a region
with no magnetic field (mind you, some of the paths in the path integral
indeed intersect the solenoid, so I’m not sure this is very mysterious).

One more thing. Now that we’ve seen that the vector potential is what
matters in quantum mechanics, what if we do a gauge transformation to

A
′

µ = Aµ − ∂µχ? (14)

Does quantum mechanics give us a different result for A than for A′? The
answer is no. To see this, consider again eq. (7).

�
A’ · ds =

� �
B · n̂dS +

� �
(∇×∇χ) · n̂dS. (15)

But the last term is 0 since (∇×∇)χ = 0. So the contribution is gauge
invariant as it should be.

9



5 Local charge symmetry and gauge invari-

ance

5.1 Derivation of the QED Lagrangian

Consider a simple complex scalar field theory whose Lagrangian consists only
of kinetic and mass terms.

L(x) =
1

2
∂µφ

∗(x)∂µφ(x)− 1

2
m2φ∗(x)φ(x). (16)

This theory is invariant under the symmetry transformation

φ(x)→ eiαφ(x). (17)

To see this, note that φ∗(x)→ e−iαφ∗(x) so that

1

2
∂µφ

∗(x)∂µφ(x)− 1

2
m2φ∗(x)φ(x)→ 1

2
∂µφ

∗(x)e−iαeiα∂µφ(x)− 1

2
m2e−iαeiαφ∗(x)φ(x)

=
1

2
∂µφ

∗(x)∂µφ(x)− 1

2
m2φ∗(x)φ(x).

(18)
This symmetry is true for any choice of α. We call this symmetry a global
charge symmetry.

IMPORTANT: To prove this, we relied on the fact that

e−iα∂µ
(
eiαφ(x)

)
= e−iαeiα∂µφ(x). (19)

This is true only because eiα is a constant.

Now imagine that we want to extend this symmetry so that a different α
could be chosen for each point in spacetime. That is,

φ(x)→ eiqχ(x)φ(x) (20)

where we’ve replace the constant α with a function qχ(x) (we could have
written a function β(x) but by convention, we always factor out an arbitrary
constant q). This is known as a local transformation and what we are
looking for, is a way for this local transformation to be a local symmetry.
The mass term continues to be invariant.

1

2
m2φ∗(x)φ(x)→ 1

2
m2e−iqχ(x)eiqχ(x)φ∗(x)φ(x) =

1

2
m2φ∗(x)φ(x) (21)
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However, the kinetic term is not invariant, because the derivative acts on the
phase factor (unlike the case when the phase factor is constant). Specifically,
notice that

∂µφ(x)→ iq
(
∂µχ(x)eiqχ(x)

)
φ(x) + eiqχ(x)∂µφ(x)

∂µφ∗(x)→ −iq
(
∂µχ(x)e−iqχ(x)

)
φ∗(x) + e−iqχ(x)∂µφ∗(x).

(22)

When you take the product of the RHS’s, you do not recover the product of
the LHS’s (although you do succeed in getting rid of the exponentials).

EXERCISE: Show this.

Here’s the grand trick that lets you turn the global symmetry into
a local symmetry.. Introduce a new field. For grins, we’ll call it Aµ. (For
a moment, pretend we never heard of electromagnetism.) Using suggestive
notation, we’ll define

Dµφ(x) = (∂µ + iqAµ)φ(x). (23)

This resembles the definition, in geometry, of a covariant derivative and in-
deed we will call it a covariant derivative. Let’s consider the transformations
of both the φ and Aµ fields:

φ(x)→ eiqχ(x)φ(x)

Aµ(x)→ Aµ(x)− ∂µχ(x).
(24)

This is a local transformation. As before, the mass term (which doesn’t
depend on derivatives or on Aµ) is invariant under the local transformation.
What happens to Dµφ(x) under this local transformation?

Dµφ(x) = ∂µφ(x) + iqAµ(x)φ(x)

→ ∂µ
(
eiqχ(x)φ(x)

)
+ iq(Aµ − ∂µχ(x))eiqχ(x)φ(x)

= (iq∂µχ(x)− iq∂µχ(x)) eiqχ(x)φ(x) + eiqχ(x) (∂µφ(x) + iqAµ(x)φ(x))

= eiqχ(x) (∂µφ(x) + iqAµ(x)φ(x))

= eiqχ(x)Dµφ(x).
(25)

Similarly, Dµφ∗(x)→ e−iqχ(x)Dµφ∗(x). Together, we obtain

Dµφ
∗(x)Dµφ(x)→ Dµφ

∗(x)e−iqχ(x)eiqχ(x)Dµφ(x) = Dµφ
∗(x)Dµφ(x). (26)

This modified kinetic term is therefore invariant under the local transfor-
mation. Based on all this, we’ve shown the local invariance of the new
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Lagrangian,

L′(x) =
1

2
Dµφ

∗(x)Dµφ(x)− 1

2
m2φ∗(x)φ(x). (27)

Now you might object that we cheated by introducing, in eq. (30), a com-
pletely arbitrary transformation for the Aµ field. And if this were the only
term in the Lagrangian with the Aµ field, then indeed there might not be
much content in this transformation. However, in order for the Aµ field to
actually do anything, it needs to be involved elsewhere in the Lagrangian.
In particular, it needs a kinetic (quadratic, with a derivative or two) term so
that it can propagate. So we need to add to the Lagrangian a kinetic
term which is invariant under the transformation of Aµ. Here’s the
magic. The Aµ transformation is one we’ve encountered before. It’s a gauge
transformation! And we know that Fµν is invariant under gauge transfor-
mations. That means we can add a kinetic term proportional to FµνF

µν ,
and that term will be automatically invariant under the local transforma-
tion. And now we’re done! We have a theory which is locally invariant and
which includes kinetic terms for both the scalar and Aµ field. Not only that,
but the theory uniquely determines the interaction between the scalar and
vector fields.

EXERCISE: Expand out the covariant derivatives in the new La-
grangian and identify the interaction terms (terms that aren’t
quadratic in the fields).

EXERCISE: Show that we can’t have a mass term that is propor-
tional to AµA

µ. Hint: show that such a term violates the local
symmetry implied by the gauge transformation of Aµ.

So far, this discussion has been about scalar fields. However, the electron and
other fermions are described by Dirac fields. Recall that the Dirac Lagrangian
for a non-interacting fermion is

LD = ψ̄(x)
(
i/∂ −m

)
ψ(x) (28)

As before, this Lagrangian has a global symmetry ψ(x) → eiαψ(x). And as
before, if we wish to promote this global symmetry to a local symmetry, we
have to introduce a new field Aµ. Then, again as before, the Lagrangian

L′D = ψ̄(x)
(
i /D −m

)
ψ(x) (29)
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is invariant under the transformations

ψ(x)→ eiqχ(x)ψ(x)

Aµ(x)→ Aµ(x)− ∂µχ(x).
(30)

If we expand out the Lagrangian of eq. (29), and then add the kinetic term
for the Aµ field, we get the familiar QED Lagrangian

L′D = −1

4
FµνF

µν + ψ̄(x)
(
i/∂ −m

)
ψ(x) + iq ¯ψ(x) /Aψ(x). (31)

5.2 U(1)

The analysis of electrodynamic gauge symmetry does not require any ref-
erence to group symmetries. However, when we generalize to SU(3), it’s
useful to make a connection between the above discussion, and group the-
ory. Let’s go back to the global transformation law φ(x)→ eiαφ(x). This is
actually a 1D representation of the group U(1). To see this, consider a 1D
representation of U(1) with representations of g1 and g2 as

g1 → U1 = eα1

g2 → U2 = eα2
(32)

Then if g1 ◦ g2 = g3 and g3 → U3 = eα3 , it turns out that U1U2 = U3.

5.3 Historical notes

For historical reasons, the Aµ field is called a gauge field. It plays somewhat
the same role as the metric in general relativity, which permits the laws of
nature to be generally covariant under coordinate transformations. In fact,
some of the first developments of gauge theory were due to Weyl who, as early
as 1918, sought to unify gravity and electromagnetism. He was perturbed by
the notion that on a Riemann manifold, the directions of vectors at different
points could be compared to one another by using a connection, but that
the lengths of the vectors were assumed to be the same when transported to
a different point. He thus generalized Riemann geometry to allow a length
transformation, and he then proposed that this had to do with electromag-
netism. Einstein responded, as reported in Early History of Gauge Theory
and Weak Interactions.
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Einstein admired Weyl’s theory as “a coup of genius of the first
rate ...”, but immediately realized that it was physically unten-
able: “Although your idea is so beautiful, I have to declare frankly
that, in my opinion, it is impossible that the theory corresponds
to nature.”

Later, in 1929, Weyl adapted his original idea to both correct the issue dis-
covered by Einstein, and to accommodate quantum mechanics.2 Instead of
a length transformation, he considered a phase transformation (which turns
out to be the phase factor used in the Aharanov-Bohm discussion above).
This early history, as well as subsequent generalizations to more complex
groups such as SU(3), is covered in Straumann’s interesting review above. I
especially enjoyed, in that paper, numerous quotes and pieces of correspon-
dence between luminaries such as Weyl, Pauli and Einstein. For example,
here’s a biting letter from Pauli to Weyl in response to an article written by
Weyl in 1929.

“Before me lies the April edition of the Proc.Nat.Acad. (US).
Not only does it contain an article from you under “Physics” but
shows that you are now in a ‘Physical Laboratory’: from what I
hear you have even been given a chair in ‘Physics’ in America. I
admire your courage; since the conclusion is inevitable that you
wish to be judged, not for success in pure mathematics, but for
your true but unhappy love for physics [5]”

6 Summary up to now

� The vector potential Aµ was introduced in classical mechanics as an
elegant mathematical quantity which was also sometimes useful for
more easily solving Maxwell’s equations.

� In classical mechanics, the forces on particles are proportional to the
E and B fields.

� Vector potentials differing by gauge transformations (an additional
term of the form ∂µχ(x)), correspond to the same E and B fields so
we might suspect that the Aµ fields are less “real” than the electric or
magnetic fields.

2An unusually thorough analysis of the relationship between geometric connections and
gauge connections, can be found in chapter 25.2 of Schwartz’s text.
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� This suspicion is wrong. In fact, the quantum mechanical equations of
motion only involve the Aµ fields. In the Aharanov-Bohm experiment,
particles appear to move in a region of space where B = 0 but never-
theless have their wavefunctions altered by the fact that in that region
A 6= 0.

� The origin of the A field can be inferred from a local-symmetry hy-
pothesis. Namely, we require that the theory of fermions not only be
invariant under the global U(1) group known as charge symmetry, i.e.
global phase transformations of the form ψ(x) → eiqαψ, but it should
also be invariant under point-by-point transformations ψ(x)→ eiqχ(x)ψ
.

� This requirement can only be accomplished by introducing a new field
that plays a similar role to the metric in general relativity. It ‘connects’
vectors (such as derivatives of a field) from one point to another in
spacetime.

� That new field is then identified as the electromagnetic vector potential
Aµ, and its transformation law turns out to be the gauge transforma-
tion. A kinetic term must be added to the Lagrangian, and that term
must be invariant under that gauge transformation. The appropriate
kinetic term is proportional to FµνF

µν .

� The resulting exact form of a locally charge-invariant Lagrangian is
then QED.

� In the meantime, the theory of quarks emerged. Three quarks make
up a baryon. For example, 3 strange quarks make up an ω− baryon.
In order to avoid conflicts with Pauli’s exclusion principle, we need
to invent a new quantum number so that all three strange quarks are
actually different than one another. The new quantum number is called
color and (see below) represents an exact global symmetry.

� Just as we did for the global charge symmetry of fermions, we can ex-
plore what happens if we promote the global color symmetry of quarks
to a local theory. That’s what we’ll do next.
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7 Color symmetry – SU(3)

We have previously encountered the group SU(3) as way of explaining pat-
terns of masses among baryons. This is called SU(3)-flavor, and it can be
simply understood as the theory of 3 different quarks, which are labeled by
a quantity we call flavor and whose interactions between one another are
flavor-independent.

SU(3)-color is an entirely different thing. For each type of quark (for ex-
ample, the strange quark), there are 3 distinct particles of identical mass
and these are labeled by a quantity we call color. For example – red, green
and blue. Whereas different-flavored quarks have different masses, different-
colored quarks have the same mass. Thus ‘color’ is a true symmetry just like
charge symmetry is a true symmetry of electrodynamics. Because
there are 3 colors, the color symmetry is SU(3)

7.1 Refresher: The action of SU(3)

This material was covered in notes for section 9.6 of Thomson.

SU(3) is the group of 3-dimensional unitary transformations with unit deter-
minant. A representation of SU(3) is a set of unitary linear transformations
in D dimensions (i.e. D x D matrices) whose multiplication rules are the
same as the multiplication rules of SU(3) transformations.

An example of a 3D representation is the set of states formed by the blue,
green and red strange-quarks. Or if you prefer a different example, consider
the blue, green and red up-quarks. Think of these designators as vector
components. Then b′g′

r′

 = U

bg
r

 (33)

where U is any 3x3 unitary matrix of determinant 1 and can be expressed as

U = eiα·T̂, (34)

where the 8 matrices T̂i = 1
2
λi are the generators of SU(3). These form the

basis of the SU(3) Lie Algebra.
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Now, we’ll change notation slightly. Instead of writingbg
r

 , (35)

we’ll write ψ where we define ψ to be the 3-component object

ψ =

ψbψg
ψr

 . (36)

Then the SU(3)-color transformations act on ψ.

7.2 Making SU(3)-color into a local symmetry

This section follows 10.1.1 in Thomson.

We’re now ready to make the connection with electrodynamics. Recall that
the charge symmetry is the U(1)-group acting on, for example, the electron
as ψe → eiαψe.

Now we have the color symmetry as the SU(3)-group acting on, for example,

the strange quarks, as ψ → eiα·T̂ψ. We can confirm, as we did for the charge
(phase) transformations, that the free quark Lagrangian is indeed invariant
under color transformations.

ψ̄(x)
(
i/∂ −m

)
ψ(x) = ψ̄(x)e−iα·T̂

(
i/∂ −m

)
eiα·T̂ψ(x), (37)

17



since e−iα·T̂eiα·T̂ = 1. (Recall that /∂ψ(x) just means γµ∂
µψ(x)). Just as we

saw with global charge transformations, the derivative term ‘commutes’ with
the constant (in spacetime) SU(3) transformation.

Now, following Weyl’s reasoning used for charge symmetry, let’s propose
that the SU(3) symmetry should be local. In other words, the theory of
color should become a theory where the equations of motion are invariant
under transformations of the form

ψ(x)→ eigsα(x)·T̂ψ(x) (38)

where we’ve replaced the constant α with a function gsα(x) (we could have
written a function β(x) but by convention, we always factor out an arbitrary
constant gs known as the strong coupling constant).

Now it’s no longer true that /∂ ‘commutes with the transformation factor.
Rather,

/∂
(
eigsα(x)·T̂ψ(x)

)
= eigsα(x)·T̂

[
/∂ψ(x) +

(
igs/∂α(x) · T̂

)
ψ(x)

]
. (39)

Consequently, the free quark theory is not invariant under the local transfor-
mation (the transformed derivative term will have an extra component). This
is similar to what we encountered with the local U(1) symmetry (charge) and
we fixed the problem by introducing a new vector field which transformed
appropriately when acted on by the charge symmetry.

Although it may not be obvious, this situation is considerably more compli-
cated than the case with charge. The extra term involves the T̂ matrices
and when we add a term to the Lagrangian which can effectively restore
the symmetry, it turns out that term needs to involve T̂ matrices. Further-
more, since those matrices don’t commute, we’ll need to take advantage of
the algebraic identity (the definition of the SU(3) Lie Algebra)

[T̂i, T̂j] = ifijkT̂k. (40)

The fijk are called the structure constants of SU(3).

Anyway, one can follow the argument used for local charge symmetry, and
after taking care of the complexities involving the non-commuting matrices,
we obtain the following. Define the ‘covariant derivative’ Dµ by

Dµ = ∂µ + igsG
a
µT̂

a (41)
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where we use the convention that the indices a are summed over because they
are repeated. The Ga

µ are a collection of vector fields where a ranges from
1 to 8 (corresponding to the 8 SU(3) generators) and are known as strong
fields (analogous to the Aµ field). Then under a local SU(3) transformation,
let

Gk
µ → Gk′

µ = Gk
µ − ∂µαk − gsfijkαkGj

µ. (42)

This is called the SU(3) gauge-transformation of the strong fields. Notice
that the first two terms on the right are similar to those of the gauge trans-
formation of the Aµ field. The term proportional to fijk is new. This terms
arises when the Lie Algebra generators don’t commute. The mathematical
term for such Lie Algebras, is nonabelian and leads to the expression for
such theories as “non-abelian gauge theories”.

From all this, we can finally show that under SU(3)-local transformations,

there is an invariance of the expression ψ̄(x)
(
i /D −m

)
ψ(x) = ψ̄(x)

(
i/∂ + igs /G

aT̂ a −m
)
ψ(x).

To summarize: We started with a free theory of colored quark fields. This
theory is invariant under global (i.e., spacetime independent) SU(3) transfor-
mations of the colored quark fields. We then examined how that symmetry
could become local. Following the model of gravity, where Lorentz invariance
becomes a local symmetry with spacetime points connected by the metric
tensor, and following the example of how charge invariance becomes a local
symmetry with spacetime points connected by the electromagnetic potential
field, we introduced strong fields with specific SU(3) transformations that we
call SU(3)-gauge transformations. Just as happens in gravity and charge-
symmetry, the symmetry-requirement forces a specific form of interaction
between the strong field and the quark fields.

We’re not done. Although we’ve introduced the strong fields and shown how
they interact with quark fields, we haven’t yet said how the strong fields
evolve – i.e. how they become dynamical. To do that, we must introduce
kinetic terms for the strong fields, i.e., quadratic terms involving one or two
derivatives. Those terms would be analogous to FµνF

µν for the Aµ fields in
electromagnetism.

We’ll do this later. Then, the complete theory of quarks and strong fields
will be done. Just as electromagnetic fields are associated with photons, the
strong fields will be associated with particles we call gluons.
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