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k Rather accurate result for electron-electron
scattering

Divergent S-matrix contribution for electron
self-scattering

Mixed bag results from last lecture about QED in the 2nd order



Can we simply ignore unrealistic self-scattering terms?

No. Here are examples of physical 4th order terms 
with divergent loop integrals:

Electron-electron scattering

Electron-photon scattering



The idea of renormalization

• Our QED Hamiltonian H is incorrect, because it results in a divergent S-matrix.
• We need to modify the Hamiltonian to fix these problems.
• We will modify H by adding counterterms in such a way that all S-matrix 

divergences are canceled out.
• We will develop special renormalization conditions for selecting 

counterterms.



Mass renormalization condition: There should be no renorm terms in the 
S-matrix.

Charge renormalization condition: Scattering of particles at low collision
energies should be no different from classic results (Coulomb-Möller 
formula for electron-electron scattering and Thomson-Compton 
formula for electron-photon scattering). 

Relativistic invariance condition: Addition of counterterms should not destroy
the relativistic invariance of QED. So, the counterterms should be constructed
by the same Weinberg's rules as were used for 𝑉1.

Three renormalization conditions



• Original interaction density
𝑉1 ෤𝑥 = −𝑒ഥψ ෤𝑥 𝛾𝜇ψ ෤𝑥 𝐴𝜇 ෤𝑥

• Mass renormalization counterterm density

𝑅 ෤𝑥 = 𝛿ഥψ ෤𝑥 ψ ෤𝑥 + 𝜀ഥψ ෤𝑥 −𝑖ℏ𝑐𝛾𝜇𝜕𝜇 +𝑚𝑐2 ψ ෤𝑥

• Charge renormalization counterterm density
𝑊 ෤𝑥 = 𝜎ഥψ ෤𝑥 𝛾𝜇ψ ෤𝑥 𝐴𝜇 ෤𝑥

• New Hamiltonian with counterterms

𝐻𝑐 = 𝐻0 +න𝑑𝒙 𝑉1 0, 𝒙 + 𝑅 0, 𝒙 +𝑊 0, 𝒙

= 𝐻0 + 𝑉1 + 𝑅 +𝑊

Selection of counterterms



• We will now treat 𝛿, 𝜀 and 𝜎 as fitting parameters that should be 
adjusted to satisfy renormalization conditions.

• We will do this perturbatively, so renormalization constants are given by 
series in the powers of electron's charge:

𝛿 = 𝜹𝟐 + 𝛿4 + 𝛿6 +⋯
𝜀 = 𝜺𝟐 + 𝜀4 + 𝜀6 +⋯
𝜎 = 𝝈𝟑 + 𝜎5 + 𝜎7 +⋯

• In our lectures we will not go beyond the 4th order S-matrix. So, 
renormalization constants in the lowest orders 𝜹𝟐 , 𝜺𝟐 , 𝝈𝟑 will be 
sufficient for our purposes. 

• In other words, our approximate renormalized Hamiltonian is
𝐻𝑐 = 𝐻0 + 𝑉1 + 𝑅2 +𝑊3

Selection of counterterms



• Next we substitute the new interaction in the usual Dyson's 
formula for the S-matrix

Calculation of renormalized S-matrix

𝑆𝑐 = 1 +න
−∞

∞

𝑑𝑡[ 𝑉1 + 𝑅2 +𝑊3

+ 𝑉1 + 𝑅2 +𝑊3 𝑉1 + 𝑅2 +𝑊3

+ 𝑉1 + 𝑅2 +𝑊3 𝑉1 + 𝑅2 +𝑊3 𝑉1 + 𝑅2 +𝑊3

+ 𝑉1 + 𝑅2 +𝑊3 𝑉1 + 𝑅2 +𝑊3 𝑉1 + 𝑅2 +𝑊3 𝑉1 + 𝑅2 +𝑊3 +⋯]



𝑆1
𝑐 = න

−∞

∞

𝑑𝑡𝑉1

𝑆2
𝑐 = න

−∞

∞

𝑑𝑡 𝑉1𝑉1 + 𝑅2

𝑆3
𝑐 = න

−∞

∞

𝑑𝑡 𝑉1𝑉1𝑉1 + 𝑉1𝑅2 + 𝑅2𝑉1 +𝑊3

𝑆4
𝑐 = න

−∞

∞

𝑑𝑡 𝑉1𝑉1𝑉1𝑉1 + 𝑅2𝑉1𝑉1 + 𝑉1𝑅2𝑉1 + 𝑉1𝑉1𝑅2 + 𝑉1𝑊3 +𝑊3𝑉1 + 𝑅2𝑅2

• and obtain a perturbative expansion
𝑆𝑐 = 1 + 𝑆1

𝑐 + 𝑆2
𝑐 + 𝑆3

𝑐 + 𝑆4
𝑐 +...

• with the following terms 

no effect from renormalization

from the mass renormalization condition it follows 𝑅2 = − 𝑉1𝑉1
𝑟𝑒𝑛

all extra terms are virtual and do not contribute to 𝑆3
𝑐

• Renorm term 𝑅2𝑅2 will be cancelled by 𝑅4
• Charge renormalization condition should be used to select 𝑊3

Calculation of renormalized S-matrix
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Feynman graphs for new interaction vertices

original interactions counterterms



𝑉1𝑉1
𝑟𝑒𝑛 +

Cancellation of divergences in the 2nd order renormalized S-matrix

pp+ = 0

𝑅2 = 0

p p

• 𝑉1𝑉1
𝑟𝑒𝑛 is infinite, so how are we going to use infinite 𝑅2 in calculations?

• The answer is given by regularization. 



• In order to avoid manipulations with infinite quantities, we introduce 
regularization, e.g. perform loop integrals only within large radius Λ in 
the momentum space.

• Example: loop integral in the electron self-scattering diagram

• This is ultraviolet divergence, because the integral diverges in the high
integration momentum limit 𝑘 → ∞. 

Regularization

p p



• After introducing the artificial integration cutoff Λ, all renormalization 
constants and counterterms become functions of Λ that tend to 
infinity as Λ → ∞

• While Λ is finite, all intermediate quantities remain finite and we can do
mathematical manipulations with them.

• At the end of calculations, we will take the physical limit Λ → ∞. All 
quantities that have good physical meaning (e.g., scattering amplitudes, 
energies) must tend to finite values in this limit.  

𝛿2 Λ → ∞, 𝜀2 Λ → ∞, 𝜎3 Λ → ∞, 𝑅2 Λ → ∞

Regularization



+ = 0

Loop-diagrams.eps

+ = radiative correction 

to electron-photon 
scattering. Its value is 
finite and small in the 
limit Λ → ∞

Cancelation of divergences in the 4th order renormalized S-matrix

𝑅2

𝑅2

with countertermsoriginal S-matrix 𝑉1𝑉1𝑉1𝑉1 with countertermsoriginal S-matrix 𝑉1𝑉1𝑉1𝑉1



+ = radiative correction

to electron-electron 
scattering

Cancelation of divergences in the 4th order renormalized S-matrix

𝑊3

• In the expansion for the renormalized S-matrix, for each original divergent 
diagram there exists a divergent diagram with conterterm vertex, such that 
the sum of the two diagrams is either zero or a small radiative correction.

• Therefore, all ultraviolet divergences are canceled out.

with countertermsoriginal S-matrix 𝑉1𝑉1𝑉1𝑉1



• Renormalization can be continued in higher perturbation orders.
• Renormalization conditions remain the same.
• Operator types of counterterms remain the same.
• Only Λ-dependencies of  renormalization constants have to be

re-calculated in each order
𝛿 Λ = 𝛿2 Λ + 𝛿4 Λ + 𝛿6 Λ +⋯
𝜀 Λ = 𝜀2 Λ + 𝜀4 Λ + 𝜀6 Λ +⋯
𝜎 Λ = 𝜎3 Λ + 𝜎5 Λ + 𝜎7 Λ +⋯

• This is a good feature of renormalizable theories, such as QED.
• In non-renormalizable theories, the number of operator types of 

counterterms grows with the perturbation order. 

Renormalization in higher perturbation orders



• Ultraviolet divergences in loop integrals result 
from slow decay of integrands at large momenta.

• Ultraviolet divergences are fixed by renormalization.
• Infrared divergences show up as singularities

of integrands at low momenta.
• Infrared divergences result from 

o zero photon mass
o the possibility of multiple "soft photon" creation in QED process.

• They can be "fixed" by summing diagrams from higher perturbation orders.

cutoff momentum, Λ0

UV
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IR
divergence
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Infrared divergences

+ + + +...

• Ultraviolet divergences in loop integrals result 
from slow decay of integrands at large momenta.

• Ultraviolet divergences are fixed by renormalization.
• Infrared divergences show up as singularities

of integrands at low momenta.
• Infrared divergences result from 

o zero photon mass
o the possibility of multiple "soft photon" creation in QED process.

• They can be "fixed" by summing diagrams from higher perturbation orders.



• Masses 𝑚 and charges 𝑒 of particles present in the theory diverge 
in the physical limit Λ → ∞.

• This is OK as these masses and charges belong to non-interacting 
(bare) particles, which cannot be observed.

• Self-interaction adds infinite corrections to 𝑚 and 𝑒, so that 
physical particles have finite masses and charges measured in 
experiments.

Common interpretation of renormalization



Richard Feynman

• Masses 𝑚 and charges 𝑒 of particles present in the theory diverge 
in the physical limit Λ → ∞.

• This is OK as these masses and charges belong to non-interacting 
(bare) particles, which cannot be observed.

• Self-interaction adds infinite corrections to 𝑚 and 𝑒, so that 
physical particles have finite masses and charges measured in 
experiments.

"Today we have no paradoxes - maybe. We have this infinity that 
comes in when we put all the laws together, but the people 
sweeping the dirt under the rug are so clever that one sometimes 
thinks this is not a serious paradox."  Richard Feynman

Common interpretation of renormalization



• Good news: Very accurate S-matrix 𝑆𝑐 whose predictions agree with 
experiment:
o Scattering cross-sections.
o Anomalous electron magnetic moment 𝑔 − 2 /2:

experiment: 0.00115965218073
QFT: 0.001159652181643

o Energies of atomic levels (Lamb shifts).
o Taking into account that original theory was mutilated by renormalization, this  

agreement is nothing short of a miracle.
• Bad news: Ill-defined Hamiltonian 𝐻𝑐 (with infinite counterterms):

o We cannot analyze bound states by diagonalization of 𝐻𝑐.
o We cannot study time evolution of states and observables by applying

the operator 𝑒𝑖𝐻
𝑐𝑡/ℏ.

o This is a serious drawback, which does not allow us to claim a complete, 
self-consistent theory.

o In the next lecture we will consider the Greenberg-Schweber dressing,
which removes all inconsistencies and divergences from QED.

Achievements and failures of the renormalized QED



Thank you!


