Making sense of QFT

Lecture 7: **Greenberg-Schweber dressing**

by Eugene Stefanovich

Renormalized QED

• From last lecture, the Hamiltonian of renormalized QED is

 $H^c = H_0 + V_1 + R_2 + W_3$

where V_1 is original interaction, R_2 and W_3 are counterterms.

• We will add to our theory also protons and antiprotons described by Dirac's quantum field $\Psi(\tilde{x})$

 $V_1(\tilde{x}) = -e\overline{\psi}(\tilde{x})\gamma^{\mu}\psi(\tilde{x})A_{\mu}(\tilde{x}) + e\overline{\Psi}(\tilde{x})\gamma^{\mu}\Psi(\tilde{x})A_{\mu}(\tilde{x})$

• R_2 and W_3 should be modified correspondingly.

Renormalized QED

• All relevant operators in QED have form $X = X^{physical} + X^{virtual} + X^{renorm}$

- Properties of interaction operators in $H^c = H_0 + V_1 + R_2 + W_3$:
	- \circ V_1 is finite and virtual
	- \circ R_2 is infinite and renorm
	- \circ W_3 is infinite and virtual
- After substituting the renormalized interaction $V_1 + R_2 + W_3$ into Dyson's S-matrix formula

 $S^c = 1 + \int_{-\infty}^{\infty}$ dt [(V₁ + R₂ + W₃) + (V₁ + R₂ + W₃) (V₁ + R₂ + W₃) + …]

- o all renorm terms cancel out
- o physical terms appear, which agree with experiment very well.

Multiplication table of operators in QED

- P = "physical"
- $V = "virtual"$
- R = "renorm"
- Physical terms describing real scattering events appear from the product of virtual terms in the S-matrix: $VV = P + V + R$
- Products of virtual terms result also in renorm terms: $VV = P + V + R$. Their removal from the S-matrix was the main purpose of renormalization. So, the necessity of renormalization is explained by the presence of virtual terms in interaction.

Stability conditions

- *Vacuum stability condition:*
	- o **Vacuum state (no particles) has no time dependence:**

 $e^{-iHt/\hbar}$ |vac $\rangle = |vac\rangle$

- \circ |vac) is an eigenstate of the total Hamiltonian with eigenvalue zero: $H|vac\rangle = 0$
- *Particle stability condition*
	- o **States of single stable particles (electrons, protons, photons) remain one-particle states at all times**
	- \circ time evolution keeps vector a^{\dagger} | vac \rangle within one-particle sector: $e^{-iHt/\hbar}a^{\dagger}|vac\rangle \sim a^{\dagger}|vac\rangle$
	- \circ one-particle sector remains invariant with respect to the total Hamiltonian

$$
Ha^{\dagger}|vac\rangle \sim a^{\dagger}|vac\rangle
$$

Stability conditions

- Non-interacting Hamiltonian satisfies both stability conditions $H_0 |vac\rangle \sim (a^{\dagger}a + c^{\dagger}c + \cdots) |vac\rangle = 0$ $H_0 a^{\dagger} |vac\rangle \sim (a^{\dagger} a + c^{\dagger} c + \cdots)a^{\dagger} |vac\rangle = a^{\dagger} a a^{\dagger} |vac\rangle \sim a^{\dagger} |vac\rangle$
- Vacuum stability condition is violated in QED

 $V^{c}|vac\rangle \sim (a^{\dagger}b^{\dagger}c^{\dagger} + \cdots)|vac\rangle \neq 0$

- Particle stability condition is violated in QED $V^c a^{\dagger} |vac\rangle \sim (a^{\dagger} c^{\dagger} a + \cdots) a^{\dagger} |vac\rangle \sim a^{\dagger} |vac\rangle$
- Renormalized QED breaks stability conditions due to the presence of virtual interactions.
- Virtual interactions are inevitable in **all** quantum field theories: $V \sim (\alpha + \alpha^{\dagger})(\alpha + \alpha^{\dagger})(\alpha + \alpha^{\dagger})(\alpha + \alpha^{\dagger}) = \alpha^{\dagger}\alpha^{\dagger}\alpha^{\dagger}\alpha^{\dagger} + \alpha^{\dagger}\alpha^{\dagger}\alpha^{\dagger}\alpha + \cdots$

Stability conditions

- Physical interactions satisfy both stability conditions $P|vac\rangle \sim (a^{\dagger}a^{\dagger}aa + a^{\dagger}c^{\dagger}ac + \cdots)|vac\rangle = 0$ $Pa^{\dagger} | vac \rangle \sim (a^{\dagger} a^{\dagger} a a + a^{\dagger} c^{\dagger} a c + \cdots) a^{\dagger} | vac \rangle = 0$
- This means that physical interaction turns on only when there are two or more particles. This is true in the rest of physics, but not in QFT!
- Stability conditions can be satisfied only in a theory with physical interaction operators.

Greenberg-Schweber dressed particle theory **Oscar Greenberg** Silvan Schweber

Idea: reformulate theory in such a way that its interaction contains only physical terms (no virtual or renorm terms)

Benefits:

- Interactions will correspond to physically realizable processes.
- Vacuum and particle stability conditions will be satisfied.
- Renorm terms will not appear in the S-matrix, because $P \times P = P$. So, mass renormalization will not be needed (hopefully, charge renormalization can be avoided as well).

$$
\begin{array}{|c|c|c|c|} \hline & P & & & R \\ \hline P & P & & P+V & P \\ \hline R & P & & V & R \\ \hline \end{array}
$$

Greenberg-Schweber dressed particle theory

- What right do we have to change the interaction (Hamiltonian) of QED? o This interaction has divergent counterterms, so it is clearly unphysical.
- S-matrix of renormalized QED is extremely accurate. Can we keep this accuracy if the Hamiltonian is transformed?
	- o Yes! The S-matrix will remain unperturbed if the new (dressed) Hamiltonian H^d is obtained as a unitary transform of the renormalized QED Hamiltonian:

$$
H^d = e^{i\Xi} H^c e^{-i\Xi}
$$

where Ξ is an Hermitian operator satisfying few simple conditions.

 \circ Then the new dressed theory will enjoy exactly the same agreement with experiment as the old renormalized QED.

Perturbative calculation of the physical dressed interaction V_d

- Apply unitary dressing transformation to the renormalized Hamiltonian H^c
	- $H^d \equiv H_0 + V^d = e^{i\Xi} H^c e^{-i\Xi}$ (2.16) $\equiv e^{i\Xi}(H_0 + V^c)e^{-i\Xi}$ = $(H_0 + V^c)$ + $i[\Xi, (H_0 + V^c)]$ - $\frac{1}{2!}[\Xi, [\Xi, (H_0 + V^c)]$ + ..., (2.17)
- Represent dressing generator Ξ as a perturbation series

$$
\Xi = \Xi_1 + \Xi_2 + \cdots. \tag{2.18}
$$

• Collect terms of equal perturbation orders and demand "physical" character of left hand sides

$$
V_1^d = V_1 + i[\Xi_1, H_0]
$$

\n
$$
V_2^d = R_2 + i[\Xi_2, H_0] + i[\Xi_1, V_1] - \frac{1}{2!} [\Xi_1, [\Xi_1, H_0]]
$$

\n
$$
V_3^d = W_3 + i[\Xi_3, H_0] + i[\Xi_2, V_1] + i[\Xi_1, R_2] - \frac{1}{2!} [\Xi_2, [\Xi_1, H_0]] - \frac{1}{2!} [\Xi_1, [\Xi_2, H_0]]
$$

\n
$$
-\frac{1}{2!} [\Xi_1, [\Xi_1, V_1]] - \frac{1}{3!} [\Xi_1, [\Xi_1, H_0]]]
$$

Perturbative calculation of the physical dressed interaction V_d

• **First perturbation order:**

$$
V_1^d = V_1 + i[\Xi_1, H_0]
$$

- V_1 is purely virtual, so Ξ_1 is calculated from the condition that the right hand side is zero. Then $\boldsymbol{V^d_1} = \boldsymbol{0}$
- **Second perturbation order:**

$$
V_2^d = R_2 + i[\Xi_2, H_0] + i[\Xi_1, V_1] - \frac{1}{2!} [\Xi_1, [\Xi_1, H_0]]
$$

- Substitute Ξ_1 into the right hand side and choose Ξ_2 to cancel all virtual terms on the right hand side. Then all renorm terms on the right hand side cancel out automatically(!). $\boldsymbol{V^d_2}$ is purely physical, as desired.
- **Higher perturbation orders:**
- The same calculation steps are repeated, so that finally

$$
V^d = V_2^d + V_3^d + V_4^d + \cdots
$$

where each term is physical. No renorm or virtual contributions in V^d .

Relativistic invariance of dressed theory

To ensure relativistic invariance of the dressed particle QED, the generator of transformation should be invariant with respect to translations and rotations

$$
[\Xi, \boldsymbol{P}_0] = 0
$$

$$
[\Xi, \boldsymbol{J}_0] = 0
$$

• Then, by applying the same transformation to the ten Poincaré generators of renormalized QED

$$
P_0 = e^{i\Xi} P_0 e^{-i\Xi}
$$

\n
$$
J_0 = e^{i\Xi} J_0 e^{-i\Xi}
$$

\n
$$
K^d = e^{i\Xi} K^c e^{-i\Xi}
$$

\n
$$
H^d = e^{i\Xi} H^c e^{-i\Xi}
$$

and taking into account that unitary transformations preserve commutators, we conclude that $\left(\bm{P}_0,\bm{J}_0,\bm{K}^d,H^d\right)$ is a valid representation of the Poincaré Lie algebra.

All terms in the dressed Hamiltonian have clear physical meanings

Some components of the complete dressed Hamiltonian $H^d =$ $V_2^d + V_3^d + V_4^d$

Operator	Example	Physical meaning, manifestations in Nature
H_0	$a^{\dagger}a, c^{\dagger}c$	relativistic kinetic energy of particles
V_2^d	$a^{\dagger}b^{\dagger}ab$	Coulomb potential, magnetic potential
	$a^{\dagger}c^{\dagger}ac$	Compton-type interactions
	$c^{\dagger}c^{\dagger}ab$	electron-positron annihilation
V_3^d	$a^{\dagger}b^{\dagger}c^{\dagger}ab$	photon emission
	$a^{\dagger}a^{\dagger}aac$	photon absorption
V_4^d	$a^{\dagger}b^{\dagger}ab$	anomalous magnetic moment, Lamb shift

Example: **electron-proton** interaction in the 2nd perturbation order V_2^d

• Dressed interaction potential in the low-velocity approximation coincides with the Darwin-Breit potential developed independently.

Шнайдер

• The Darwin-Breit Hamiltonian reproduces all non-radiative electromagnetic phenomena on par with Maxwell's electrodynamics.

Low-energy states of the hydrogen atom (electron + proton) in dressed QED

Dressed particle QED vs. renormalized QED

- In the dressed particle theory, primary ingredients are particles, which are not affected by self-interaction. Their masses and charges are exactly those measured in experiments.
- The dressed QED has a finite Hamiltonian

$$
H^d = H_0 + V_2^d + V_3^d + V_4^d + \cdots
$$

- This Hamiltonian satisfies Wigner-Dirac requirements of relativistic invariance.
- Presently, it is known at low orders (≤ 4) . Higher order terms could be calculated as well.
- The particles interact with each other by action-at-a-distance potentials that depend on instantaneous positions and velocities.

Dressed particle QED vs. renormalized QED

- Higher-order interactions describe also particle emission and absorption.
- S-matrix calculated with H^d is **exactly** the same as S-matrix of the renormalized QED. All experimental predictions of the latter are reproduced **exactly**.
- While renormalized QED is limited to S-matrix calculations, dressed particle theory can go beyond that: it can calculate *wave functions* of bound states and *time evolution* of state vectors and observables.
- We can project (approximately) H^d on a few-particle sector of the Fock space, diagonalize this projection and obtain a realistic energy spectrum as well as wave functions of bound states. Such calculations are impossible with the Hamiltonian H^c of the renormalized QED.
- In the next lecture we will discuss possible experimental tests of the dressed QED and its relationships with Einstein's special relativity.

Thank you!