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1 What we’ll calculate

We’ll follow Schwartz section 15.4. Take a scalar field theory for simplicity.

VI =
λ

4!
φ4 (1)

Feynman rules:

-𝑖λ

𝑘 𝑖

𝑘2 + 𝑖ε

Probability amplitude of scattering (collision) of 2 particles:

𝑝1

𝑝2

𝑝1

𝑝2

𝑝 = 𝑝1 + 𝑝2 𝑝 = 𝑝1 + 𝑝2

𝑘

𝑘 − 𝑝

𝑖𝑀1 = 𝑖𝑀2 =

𝑝 = 𝑝1 + 𝑝2 = (2𝐸, 0)

𝑝1=(𝐸, Ԧ𝑝 )

𝑖𝑀(𝐸) ≡

𝑝2=(𝐸,− Ԧ𝑝)

= + + …++
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The theory has one parameter to be set by experiment, λ. Then
compute M(E).

2 How to calculate

2.1 Two key assumptions

� QFT calculations are insensitive to physics at very small distances
(large momenta)

� Therefore we can pick a cutoff (small distance or large momentum),
calculate M(E) with that cutoff, and then show that M(E) is cutoff-
insensitive for sufficiently small distances or large momenta.

2.2 Steps

� Each vertex has a factor of λ.

� Each loop involves an integral
�
d4k =

�
|k|3d|k|

�
dΩ

� Don’t include large momenta in the integral. i.e.,
� Λ

0
|k|3d|k|

�
dΩ. Λ

is called the ‘cutoff’.

� Very important. Set the value of λ by comparing the theoretical
result (which may depend on the cutoff) to some measurement.

� Compute M(E) to some order in perturbation theory.

2.3 Digression on general perturbation theory

Suppose we have a perturbation expansion

f(λ) = a1λ+ a2λ
2 + ... (2)

and then suppose we introduce λ
′

so that

λ
′
= λ+ bλ2. (3)
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Assuming λ is small, we can invert this equation to look like

λ = λ
′ − bλ′2 + ... (4)

Then we can write f in terms of λ
′

as

f(λ) = a1λ+ a2λ
2 + ...

= a1

(
λ
′ − bλ′2 + ...

)
+ a2

(
λ
′ − bλ′2 + ...

)2

+ ...

= a1λ
′
+ (a2 − a1b)λ

′2 + ...

(5)

We see that the expansion coefficient for λ2 is different from the expansion
coefficient for λ

′2. BOTH EXPANSIONS OF f ARE LEGITIMATE
PERTURBATION EXPANSIONS BUT THEIR COEFFICIENTS
DEPEND ON THE DEFINITION OF λ.

We are going to exploit this simple fact.

3 Compute

Compute to second order in λ.1

𝑝1

𝑝2

𝑝1

𝑝2

𝑝 = 𝑝1 + 𝑝2 𝑝 = 𝑝1 + 𝑝2

𝑘

𝑘 − 𝑝

−𝑖λ

𝑖

𝑘2

𝑖𝑀1 = 𝑖𝑀2 =

Apply the Feynman rules iM(E) = iM1 + iM2 + ....

iM1 = −iλ (6)

1There is actually another bubble diagram in second order but we will ignore this for
now.
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iM2 =
(−iλ)2

2

� Λ

0

|k|3

(2π)4
d|k|

�
i

k2

i

(p− k)2
dΩ (7)

where Ω represents the angular coordinates in 4-space2..

Next, decide on a measurement to determine the value of λ.

� Pick an energy ER and measure the 2-particle scattering amplitude
when each particle, in the center-of-mass, has energyER. i.e., Measure
M(ER).

� Compute M(ER) as a function of λ.

iM(ER) = −iλ+
(−iλ)2

2

� Λ

0

|k|3

(2π)4
d|k|

�
i

k2

i

(pR − k)2
dΩ + ... (8)

where pR = (2ER,~0)

� Now for notational ease, define λR = −M(ER), so −iλR = −iλ +
(−iλ)2

2

� Λ

0
...+ ...

� We see that λR = λ+ αλ2 + ... where

α =
−i
2

� Λ

0

|k|3

(2π)4
d|k|

�
i

k2

i

(pR − k)2
dΩ (9)

We’re now ready to make a prediction of M(E) for arbitrary energy E in
terms of λ. First, remember our digression on perturbation theory. Since λR
is a power series in λ just as in eq. (3), then M(E) can be expressed as a
series in λR following the same logic we used for eq. (5). The result is

−M(E) = λR + (ξ(E)− α)λ2
R + ... (10)

where

ξ(E) =
−i
2

� Λ

0

|k|3

(2π4)
d|k|

�
i

k2

i

(p− k)2
dΩ (11)

with p = (2E,~0).

2You might notice that I treat the 4-vectors as though they are Euclidean, for example
k2 =

∑
µ k

2
µ. I’m allowed to do this by analytically continuing the 0 components from k0

to ik0 and using the iε to avoid poles. This trick is known as Wick rotation, but for our
purposes the details aren’t important.
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ξ(E) and α are identical integrals except that one has a denominator with
pR and the other had a denominator with p. Combine the integrals to get

−M(E) = λR +

[
i

2

� Λ

0

|k|3

(2π)4|k|2

� (
1

(p− k)2
− 1

(pR − k)2

)
dΩ

]
λ2
R + ...

(12)
It turns out that the integral is finite even if Λ → ∞! So everything is
insensitive to the cutoff.

To see this, write

1

(p− k)2
− 1

(pR − k)2
=
p2 + p2

R − (pR + p) · k
(p− k)2(pR − k)2

(13)

For very large values of |k|, the RHS is proportional to 1
|k|3 . The complete

integrand is then proportional, at large |k|, to 1
|k|2 and therefore is convergent

as Λ→∞.

−M(E) = λR +

(
χ(E) +O(

1

Λ
)

)
λ2
R + ... (14)

where χ(E) is independent of Λ.

It is worth repeating that we do NOT take Λ to∞. Rather, Λ characterizes
the scale of new physics. Even though the equation above has a term O( 1

Λ
),

this is a bit misleading because we need a dimensionless quantity and there-
fore must multiply 1

Λ
by some coefficient with dimensions of energy. But the

only candidate is E, so really we should write O(E
Λ

). As long as we are only
interested in physics at energies E << Λ, that term will be negligibly small.

4 What happened to infinities and countert-

erms?

The infinities went away because we used a cutoff. That’s nothing new.
What’s ‘new’ is the viewpoint. Our viewpoint is that physics should be in-
sensitive to what goes on at small distances and that we can test this premise
by showing that our computations of physical quantities are insensitive to
high-energy terms.

What may seem surprising, is that our program was successful!
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In the φ4 example, the procedure used is a bit unwieldy, especially when
generalized to other theories and higher orders. For example, we had to
combine integrands as in eq. (13). That integral is messy, even though it
converges.

Instead, it’s often more convenient to do the integrals BEFORE we combine
them, so for example we would perform the integral

� Λ

0

|k|3

(2π)4
d|k|

�
i

k2

i

(p− k)2
dΩ. (15)

This integral is proportional to log(Λ) which blows up as Λ→∞. So that’s
the famous ‘infinity’ that has come up before. And how do we cancel that
infinity? By subtracting the integral evaluated at pR, namely

� Λ

0

|k|3

(2π)4
d|k|

�
i

k2

i

(pR − k)2
dΩ. (16)

That’s the counterterm and it also blows up. When the calculations are done
this way, integrals have to be regulated, and counterterms have to be added.
The technique works because the ‘real’ perturbation expansion in terms of
renormalized parameters (e.g. λR) doesn’t have divergent integrals.

Is this kind of thing some brand new QFT-specific kind of mathematics? Not
really. We can summarize these manipulations by saying that we are looking
at quantities like limΛ→∞ (f1(Λ)− f2(Λ)). This is well-defined and, in fact, is
the only legitimate way to treat integrals whose upper bound is∞. If, on the
other hand, we tried to rewrite the above as limΛ→∞ f1(Λ) − limΛ→∞ f2(Λ),
we’d potentially end up with ∞−∞, which is nonsense.

It turns out we’ve encountered precisely this kind of thing in Newtonian
mechanics, where we look at quantities like limε−→0

f(x+ε)−f(x)
ε

which is con-

veniently known as f
′
(x). If we took the limits before taking the ratio, so

limε−→0(f(x+ε)−f(x))
limε−→0 ε

, we’d end up with 0
0

which is also nonsense. We can make
this look even more like the terms we get in QFT, by speaking of lim 1

ε
→∞.

There’s nothing a priori obvious that calculus should be useful for dealing
with laws of classical physics. There’s an implicit assumption that the be-
havior of systems at VERY small distances, really doesn’t affect the physics
of ordinary distances. If we wanted to approximate space by a grid with very
small spacing, we’d get results that are extremely close to correct. Indeed,
that’s why quantum mechanics wasn’t discovered until the 20th century.
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