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1 Outline

� Start with something new, the quark-gluon interaction Lagrangian (aka
SU(3)-color aka QCD).

– Feynman rules for SU(3)-color

– Some interesting Feynman diagrams

– Some comments

� Review the motivation for the QCD Lagrangian

– History of quark flavors and group theoretic scattering relation-
ships
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– Local (gauge) symmetry in QED

– Generalization of gauge symmetry to SU(3)

� Advanced topics

– Regulators revisited: renormalization and ghosts

– Asymptotic freedom: The 1970’s revolution – the interaction term
is small for high energy interactions. QCD validation begins.

– Confinement and lattice validation

– Experiments

2 QCD

2.1 The Lagrangian

(See Thomson 10.1.1 and 10.2 for some overlap with what follows.)

Here is the Lagrangian for the interaction of one flavor of quark with gluons.
The Lagrangian also includes terms of the interaction of one scalar
with gluons but we will not be concerned with this. For multiple
flavors of quarks and scalars, there is an identical (other than for quark
mass) Lagrangian to be added for each flavor.
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� The index ‘a’ ranges from 1 to 8 and represents coefficients of the 8-
dimensional adjoint representation of SU(3).

� Greek (vector-)indices range from 0 to 3 (time and space)

� ‘A’ are vector-boson fields known as gluon fields, analogous to the EM
vector field known as the photon field.

� ‘c’ and ‘c̄’ are ghost and anti-ghost fields (to be introduced in the fu-
ture), which are gluon artifacts (they don’t correspond to particles).

� ‘ξ is an arbitrary constant related to the ghosts. Physical measurements
are independent of ξ.

� ‘fabc’ are color structure constants (see below)
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� ‘ψi’ are the quark fields. Each is a 4-spinor whose spinor indices aren’t
shown. The indices ’i’ and ’j’ range from 1 to 3 (blue, red and green) and
represent coefficients of the 3-dimensional fundamental representation
of SU(3).

� Slash notation is defined for objects Xµ with vector-indices as /X =
Xµγ

µ where the γµ are 4x4 Dirac matrices acting on spinor objects.

� g is the QCD coupling constant

� m is the quark mass.

� T aij are the components of a set of 8 (indexed by ‘a’) 3x3 color matrices
(see below)

� We will ignore the last line having to do with scalar fields.

The 8 matrices Ta = Ta = 1
2
λi are the generators of SU(3). These form the

basis of the SU(3) Lie Algebra.

The generators satisfy the algebraic relation which specifies the SU(3) algebra

[Ta,Tb] = TaTb −TbTa = ifabcTc. (1)

The fabc are known as the structure constants of the algebra.
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2.2 Feynman Rules
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There are a few additional rules.

� Propagator rules apply to lines joining two vertices

� 4-momenta are conserved at each vertex.

� Each loop has one undetermined momentum k which, together with the
momenta of other lines arriving at the vertex, determine the momentum
of each line in the loop. You must then integrate over k. The integrand
f(k, ...) is obtained from the above Feynman rules

�
d4k

f(k, ...)

(2π)4
. (2)

� Don’t forget that the integral must be regulated (e.g. ‘cut off’) and
that terms must be combined as we discussed in the section on renor-
malization (alternatively but equivalently, counterterms can be added
to the Feynman rules) and then the regulator can be ‘removed’ (e.g.
cut-off goes to infinity).

� Lines free at one end represent ingoing or outgoing particles and should
be multiplied by the polarization vectors for those particles.

2.3 Some interesting Feynman diagrams

Here is a partial set of Feynman diagrams for two incoming and three out-
going gluons, just to give you an idea.
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2.4 Some comments

� The lowest order (g2) diagrams are tree diagrams that look like these.

The Feynman rules for this diagram is similar to the Feynman rules for
photon-exchange by electrons (same propagator). But these lead to
a Coulomb force which dies off at large distances. So we’d expect we
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could break apart neutrons etc. into quarks, just like we can break off
the electrons in atoms. That doesn’t happen. Why not?

� The perturbation series can be useful only only if higher-order terms
are smaller. Prior to the early 1970’s, it was accepted wisdom that
the coupling constant g is large. That was inferred from interactions
amongst nucleons, known as strong interactions. As a result, the tree
diagrams do NOT dominate the series, and we don’t know
what the force is between quarks.

� When QCD was first hypothesized, physicists gave arm-waving argu-
ments that the inter-quark potential was linear, and therefore quarks
were confined. Attempts were made to put these arguments on firmer
footing based on new kinds of strong-coupling approximation methods
– which eventually decades later, led to some successes of lattice QCD.

� What is remarkable is that in the late 60’s and early 70’s, QCD was
simply a huge leap of faith based on some beautiful mathematical ideas
with no useful mathematical methods for comparing the theory to ex-
periment.

3 Review: Motivating the QCD Lagrangian

3.1 Symmetries

� E.g. rotational symmetry. “The laws of nature are invariant under
rotations”. i.e. Equations of motion are invariant under rotations.

– Suppose e.o.m. looks like

F (x, y) = 0 (3)

– Then let (x′, y′) be a rotation of (x, y).

x′ = x cos(θ) + y sin(θ)

y′ = −x sin(θ) + y cos(θ)
(4)

– If we know that the e.o.m. is invariant under rotations, then we
can rewrite it as

F̃ (x2 + y2) = 0. (5)
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– That’s a great simplification.

� Takeaway: Symmetries simplify the equations of motion and generally
give relationships between experiments.

� Rotational symmetry is one of the Poincare symmetries.

� There are other symmetries. The earliest symmetry studied was charge
symmetry. For now, we’ll study flavor and color symmetry, both ex-
amples of internal symmetries.
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� Field theory considerations – an example:

– Suppose a set of fields Xm transform under group transformations
as

g : Xm →
∑
n

αmn(g)Xn (6)

– Suppose there is a Lagrangian term cubic in X. We want to find
coefficients cmnp so that cmnpX

mXnXp is invariant under group
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transformations. Namely

g : cmnpX
mXnXp → cmnp

(
αmm

′
(g)Xm′

)(
αnn

′
(g)Xn′

)(
αpp

′
(g)Xp′

)
= cmnpX

mXnXp

(7)

– We say that cmnpX
mXnXp is a scalar. The values of cmnp can be

found in tables of Clebsch-Gordan coefficients.

3.2 Flavor

The type of quark (there are 6 types) is known as FLAVOR. Al-
though the interactions are symmetric, the quark masses are dif-
ferent and thus break the symmetry.

3.2.1 Fun and games with flavor symmetry

� The up and down quarks have almost the same mass, so there is almost
a symmetry in transforming up into down. So, for example, the proton
is uud and the neutron is ddu so by transforming ups into downs, the
physics of neutrons and protons is (so far as strong interactions go)
similar.
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� Most ‘common’ particles are made of up and down quarks, so physi-
cists learned to make predictions based on so-called isospin symmetry,
where ups are transformed to downs. That symmetry is mathemati-
cally SU(2).

� One important set of predictions has to do with “clustering” of
particle masses. This is analogous to the clustering of spectral
lines of the hydrogen atom (aka eigenvalues of the Hamilto-
nian) originating from spherical symmetry.

� Another set of predictons has to do with scattering ratios. Consider the
heavy baryons known as Roper resonances N0 and N+. The two Roper
resonances form an isospin doublet (the ‘fundamental’ representation of
SU(2)) just like the neutron-proton system. These interact with pions,
that form an isospin triplet (the ’adjoint’ representation of SU(2)).

� If we want to write an isospin-invariant (i.e. “scalar”) effective La-
grangian, limited to 3-field interactions that can represent the inter-
actions between Roper-resonances, ordinary nucleons, and pions, the
unique SU(2)-invariant interaction is

LI = k

[
N̄+nπ+ + N̄−pπ− − 1√

2

(
N̄+pπ0 + N̄0nπ0

)]
+ herm. conj..

(8)

� We can then use Feynman diagrams to compute decay rates. For ex-
ample, here are the Feynman diagrams for positive Roper decays into
a nucleon and pion. The Feynman decay diagrams look for example,
like this:
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These diagrams are similar to one another but what is important is the
vertex coefficient. For the first decay, the coefficient is k and for the
second decay, the coefficient is −k/

√
2.

Therefore the ratio of decay amplitudes is −
√

2 and the ratio of prob-
abilities is 2.

We therefore predict that the rate of decay of N+ → n+ π+ is 2 times
the rate of decay of N+ → p+ π0.

� These symmetry considerations can be extended to include the strange
quark, even though it has a significantly higher mass than the up and
down quarks. The symmetry in that case is SU(3) and is known as
SU(3)-flavor because it acts on the flavors. Reasonable predictions,
including mass-clustering patterns can be made using SU(3) rep-
resentation theory.

� For heavier quarks, their masses are so much different than the up,
down and strange quark masses, that symmetry predictions (based on
SU(4) or SU(5) etc.) are more or less useless.
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3.3 Color

3.3.1 Why color?

s s

s
Ω−

� The Pauli exclusion principle prohibits this, since it isn’t possible to
have two identical fermions (much less 3 particles) in the same state.

� Resolved if we hypothesize that each of the quarks is actually in a
different “state” whose distinct property we call “color”.

s s 

s 
Ω−

� Unlike flavor symmetry, color symmetry is exact.
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3.4 From global to local symmetries

Flavor symmetry was a kind of digression because it is only an approxi-
mate symmetry. Previously, physicists examined Poincare (Lorentz) sym-
metry and charge symmetry – both examples of exact symmetries. Weyl
observed that both symmetries could be promoted from “global” to “local”,
by means of a “connecting” field which effectively communicates the symme-
try from one point of spacetime to another.

It was hypothesized that color symmetry was the same way.

Ψ𝑏𝑙𝑢𝑒(𝑥1)

Ψ𝑏𝑙𝑢𝑒(𝑥2)

Ψ𝑟𝑒𝑑(𝑥1)

Ψ𝑟𝑒𝑑(𝑥2)
Global symmetry

Ψ𝑏𝑙𝑢𝑒(𝑥1)

Ψ𝑏𝑙𝑢𝑒(𝑥2)

Ψ𝑟𝑒𝑑(𝑥1)

Ψ𝑔𝑟𝑒𝑒𝑛(𝑥2)
Local (gauge) symmetry

𝐴𝑏𝑙𝑢𝑒−𝑏𝑙𝑢𝑒 𝐴𝑟𝑒𝑑−𝑔𝑟𝑒𝑒𝑛

3.5 How this works for a scalar theory with charge
symmetry

Consider a simple complex scalar field theory whose Lagrangian consists only
of kinetic and mass terms.

L(x) =
1

2
∂µφ

∗(x)∂µφ(x)− 1

2
m2φ∗(x)φ(x). (9)
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This theory is invariant under the charge-symmetry transformation

φ(x)→ eiαφ(x). (10)

To see this, note that φ∗(x)→ e−iαφ∗(x) so that

1

2
∂µφ

∗(x)∂µφ(x)− 1

2
m2φ∗(x)φ(x)→ 1

2
∂µφ

∗(x)e−iαeiα∂µφ(x)− 1

2
m2e−iαeiαφ∗(x)φ(x)

=
1

2
∂µφ

∗(x)∂µφ(x)− 1

2
m2φ∗(x)φ(x).

(11)
This symmetry is true for any choice of α.

Charge symmetry is a global symmetry.

IMPORTANT: To prove the invariance, we relied on the fact that

e−iα∂µ
(
eiαφ(x)

)
= e−iαeiα∂µφ(x). (12)

This is true only because eiα is a constant.

Now imagine that we want to extend charge symmetry to be a local symme-
try so that a different α could be chosen for each point in spacetime. That
is,

φ(x)→ eiqχ(x)φ(x) (13)

This will be tricky because the kinetic term has a derivative, which ‘con-
nects’ fields at ‘adjacent’ points, and spoils the symmetry. It will turn out
that we need to introduce a new field that compensates for the
derivative.

So... let’s call the field Aµ. (For a moment, pretend we never heard of
electromagnetism.) Using suggestive notation, we’ll define

Dµφ(x) = (∂µ + iqAµ)φ(x). (14)

This resembles the definition, in geometry, of a covariant derivative and in-
deed we will call it a covariant derivative. Consider the following transfor-
mation rules for both the φ and Aµ fields:

φ(x)→ eiqχ(x)φ(x)

Aµ(x)→ Aµ(x)− ∂µχ(x).
(15)

By applying these local transformation rules we can show that

Dµφ
∗(x)Dµφ(x)→ Dµφ

∗(x)Dµφ(x). (16)
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We now have a new Lagrangian which is locally charge invariant.

L′(x) =
1

2
Dµφ

∗(x)Dµφ(x)− 1

2
m2φ∗(x)φ(x). (17)

But we’re not done. Since we introduced a new field, Aµ, we have to add
a kinetic term for Aµ – a quadratic term involving one or two derivatives.
It turns out that the appropriate locally-invariant term is just FµνF

µν , the
product of electromagnetic field strengths.

Presto ... out of whole cloth we’ve created scalar QED with a Lagrangian
uniquely determined by the requirement of local charge symmetry!

3.6 Local color symmetry

The quark color transformations are a generalization of charge transforma-
tions. Instead of multiplication by a phase factor, we now multiply by a
complex matrix.

Consider the blue, green and red up-quarks. Think of these designators as
vector components. Then b′g′

r′

 = U

bg
r

 (18)

where U is any 3x3 unitary matrix of determinant 1 and can be expressed as

U = eiα·T̂, (19)

where the 8 matrices T̂i = 1
2
λi are the generators of SU(3). These form the

basis of the SU(3) Lie Algebra.
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Now, we’ll change notation slightly. Instead of writingbg
r

 , (20)

we’ll write ψ where we define ψ to be the 3-component object

ψ =

ψbψg
ψr

 (21)

Then the SU(3)-color transformations act on ψ.

The Lagrangian for this theory will need to be invariant under these SU(3)
transformations – that is, the individual terms are ‘scalars’ with respect to
SU(3) transformations.

So far, the SU(3) transformations are independent of space and time. They
are global. We make the symmetry local following the same approach used
for local scalar charge symmetry.

� A new field, Aµa is introduced. This is called the gluon field.

� It not only has a Lorentz index µ but also a color index a which ranges
from 1 to 8.

� Then we modify the quark kinetic term by changing the derivative to
a covariant derivative involving the gluon field.
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� Furthermore, we add a gluon kinetic term.

� All terms are constrained so that the Lagrangian is invariant under
local color symmetries.

The final result was the Lagrangian we studied last time.

The above Lagrangian actually also includes tri-colored scalars (no Lorentz
index) in case we wanted to add scalar particles into our theory.

The Lagrangian also includes yet other fields known as ghosts. These are
color artifacts and will be explained next time.
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4 Advanced Topics

4.1 Regulators revisited

4.1.1 Philosophical review

Like all of physics, the mathematics involves limits.

� In classical physics, we typically refer to ‘a limit as ε→ 0 of some ratio’.

– That’s calculus. Call this ε-regularization

� In QFT, refer to a cutoff limit, ‘a limit as Λ→∞ of some integral’

– Call this Λ-regularization

� Mathematical rigor will demand that the limits be carefully defined
and that theorems be carefully proven.

– For QFT, the mathematical rigor is still incomplete.

– In QFT, other kinds of regularizations are also used, and proven
to be equivalent order by order in various kinds of expansions.

� Regularization works because of an implicit law of physics: the laws of
macro-scale nature are insensitive to the details of micro-scale nature.

4.1.2 More on Λ-regularization

� Suppose A and B are constants. Then clearly� 2

0
Adx� 2

0
Bdx

=
2A

2B
=
A

B
(22)

� What if the upper limit of each integral is ∞? We introduce the regu-
lator Λ.

� Then we have

lim
Λ→∞

� Λ

0
Adx� Λ

0
Bdx

= limΛ→∞
AΛ

BΛ
=
A

B
. (23)

� This technique works only if the limits are taken after the ratios.

21



4.1.3 Renormalization (review)

Consider a generic QCD scattering amplitude for 2 incoming and 2 outgoing
particles (For simplicity, suppress spin-dependence). This depends on the
unknown parameter g.

𝑝1

𝑝2

𝑝1

𝑝2

𝑝 = 𝑝1 + 𝑝2 𝑝 = 𝑝1 + 𝑝2

𝑘

𝑘 − 𝑝

𝑖𝑀1 = 𝑖𝑀2 =

𝑝 = 𝑝1 + 𝑝2 = (2𝐸, 0)

𝑝1=(𝐸, Ԧ𝑝 )

𝑖𝑀(𝐸) ≡

𝑝2=(𝐸,− Ԧ𝑝)

= + + …++

� In what follows, pick Λ and at the end Λ→∞.

� Assume that QCD can predict R(E,ER) ≡ M(E)
M(ER)

� The prediction of M(E) depends on g. Similarly for M(ER). So we

write M(E, g) and M(ER, g) so R(E,ER) ≡ M(E,g)
M(ER,g)

� (Renormalization) Assume we measured M(ER, g) so now we know its
value. Mref = M(ER, g).

– Invert: g = M−1(ER,Mref )

– Then

R(E,ER) =
M(E,M−1(ER,Mref ))

Mref

(24)

� The only unmeasured quantity on the RHS is the numerator, and it
doesn’t involve g.

� We can derive an order by order expansion in Mref or some related
parameter. If that parameter is small we can hope the series is
a good approximation.

� All intermediate steps involve the regulator (e.g. Λ-cutoff) which we
can remove at the end.
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� BOOKKEEPING: The above procedure is arithmetically challeng-
ing. A good trick is to introduce intermediate quantities called coun-
terterms. Formally they are additional terms in the Lagrangian leading
to new Feynman diagrams and Feynman rules. THIS IS JUST A
TRICK.

4.1.4 Choosing the coupling constant – asymptotic freedom

See Thomson 10.5 for a version of this material, with many details filled in,
and with a comparison to QED – which is not asymptotically free.

� Return to the diagram that defines M(E). Suppose that the lowest-
order Feynman diagram for QCD scattering of quarks looks like

𝑝1

𝑝2

𝑝1

𝑝2

𝑝 = 𝑝1 + 𝑝2 𝑝 = 𝑝1 + 𝑝2

𝑘

𝑘 − 𝑝

𝑖𝑀1 = 𝑖𝑀2 =

𝑝 = 𝑝1 + 𝑝2 = (2𝐸, 0)

𝑝1=(𝐸, Ԧ𝑝 )

𝑖𝑀(𝐸) ∿

𝑝2=(𝐸,− Ԧ𝑝)

If we apply the Feynman rules for this diagram, we get something like

iM(E) = −ig2 1

p2
+O(g4) = −ig2 1

4E2
+O(g4) (25)

where g is the coupling constant that appears in the QCD Lagrangian.

� Here’s the trick: Define g(ER) via

iM(ER) = −i (g(ER))2 1

p2
= −i (g(ER))2 1

4E2
(26)

This looks almost identical to eq.(25) EXCEPT that it’s missing the
order-g4 terms. We’ve defined g(ER) to be EXACTLY the ‘cou-
pling’ measured at the reference energy ER.
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� In the last section, we saw that we can compute M(E) directly from
M(ER) without using g. Now we see, with our definition of g(ER) in
terms of M(ER) that we can compute M(E) in terms of g(ER).

� As it turns out, this leads to a perturbation series very similar to our
original one. g(E) is known as ‘the renormalized QCD coupling
constant defined at energy E’.

� Now, what happens when we compute M(E) through O(g4)? Here’s
the answer:

iM(E) = −i 1

4E2
g2(ER)

(
1 +

β

4π
g2(ER) log(

E2

E2
R

)

)
(27)

where

β =
2

3
nf − 11 (28)

and nf are the number of flavors.

� β is known as the beta-function. With 6 flavors, the beta-function is
negative!!!!! THIS WAS THE STUPENDOUS DISCOVERY KNOWN
AS ‘ASYMPTOTIC FREEDOM’. Why is it so important? Because if
E > ER, then M(E) < M(ER) and that means g(E) < g(ER). That
means perturbation theory is more reliable when we pick a renormalized
coupling constant defined at a higher energy.

� But wait! Are we getting something for nothing? Why can’t we then
do low-energy calculations but using g(ER) for some large value of ER?
The answer is subtle but amounts to the following: when a process has
a typical scattering energy of E, the perturbation calculations typically
have terms that look like powers of log(E/ER) where ER is the reference
energy used for defining g(ER). If E is much different than ER, then
the logs cause terms to be large even though g(ER) might be small.
To control these logs, we need to pick a reference energy close to the
energy of interest. If the reference energy is small, then g(ER) is large,
so we’re out of luck. But if the reference energy is large, then g(ER) is
small, so as long as we’re computing process with energies close to ER,
the calculations are reliable.

� The discovery that β < 0 – and its significance – were first noted inde-
pendently by Politzer at Harvard, and Gross and Wilczek at Princeton
in 1973. This revolutionized physics because it meant perturbative
QCD could be used to predict processes at high energies. These pre-
dictions have proven to be extremely accurate leading to excellent tests
of QCD.
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4.1.5 Color confinement

This topic is covered quite well in Thomson 10.4.

Why has no-one ever seen a quark or gluon? If we imitate QED, we’d expect
to learn that gluons cause a calculable force between quarks, and that we
can then solve the Dirac equation to find

� The bound states of quarks

� Ionization energies of those bound states – i.e., energies at which we
can break apart the bound states into their constituent quarks

In the last section we discovered why we can’t apply the Dirac equation to a
QED-like force. Namely, the QED-force is a manifestation of the lowest-order
perturbation theory result that photons cause electron to scatter with an
amplitude proportional to 1/p2. The typical binding energies are very small.
But for QCD, small binding energies correspond to the region where either
g(E) is large or, if we chose a larger reference energy ER our perturbative
terms would involve factors of log(E/ER) which are large. So perturbation
theory isn’t applicable and we can’t use it to compute the binding force.

Thomson describes a kind of intuitive explanation that we might expect a
linear potential rather than a Coulomb potential. The explanation very arm-
waving but tends to be regarded as a ‘decent’ guess. Various approximation
techniques were developed in the early days for putting these intuitions onto
a firmer basis and ultimately, lattice methods confirmed the intuitions.

The interaction force, according to this hand-waving argument grows as the
quarks are pulled apart, so they can’t ionize. At best, if you apply enough
energy, you’ll create severa bound-states where you only had one to begin
with (remember, in QFT you can end up with more fundamental particles
than you started with).

The rule ends up being that the only observable particles are those with no
net color – i.e., ‘color singlets’. The group-theoretic way to say this is “N
quarks can be observed in a bound state only if their tensor product is in
the scalar (1-D) representation of SU(3)”. Here are some examples of tensor-
product decompositions. Only those which include a 1-D representation are
candidates for observable bound states. Recall that quarks are in the 3 repre-
sentation and antiquarks are in the 3̄ representation. Both are 3-dimensional
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but different.

3⊗ 3̄ = 1⊕ 8

3⊗ 3 = 6⊕ 3̄

3⊗ 3⊗ 3 = 8⊕ 1

3⊗ 3⊗ 3̄⊗ 3̄ = 1⊕ 1⊕ 8⊕ 8⊕ 8⊕ 8⊕ 10⊕ 10⊕ 27

(29)

Bound observable particles can be made only from quark/antiquark combi-
nations (on the LHS of the equations) for which a 1-dimensional (irreducible)
representation appears on the RHS. So, for example in the first line, a linear
combination can be found of quark-antiquark colors, so that the combination
is invariant under color transformations (i.e., it’s a scalar). Such a combina-
tion is known as a meson. In the second line, we see that there is no invariant
color-combination of a quark-quark pair. So no bound states consist of two
quarks. On the other hand, three quarks can combine into a color-invariant
state which is known as a baryon. The final example here is a so-called
‘tetraquark’. Several of these have been discovered in the past decade. As
can be seen here, there are two distinct invariant color combinations of 2
quarks plus 2 antiquarks.

4.1.6 Ghosts

(Fadeev and Popov – 1967) This topic is new but also involves a kind of
regularization. The issue has to do with the enormous path-redundancy of
gauge theories.

� Simple introduction.

– Formally write R(f, g) as

R(f, g) =

�∞
0
f(x)dx�∞

0
g(x)dx

(30)

We could define this as a Λ-limit. Recall that if f(x) = A and
g(x) = B, where A and B are constant, then

lim
Λ→∞

� Λ

0
Adx� Λ

0
Bdx

= limΛ→∞
AΛ

BΛ
=
A

B
. (31)
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– Suppose, instead of constant functions, f and g are periodic:
f(x) = f(x+ 2nπ). Then f can be expressed as f(x) = f̃(cos(x))
. Similarly with g. The Λ-limit becomes something like

lim
Λ→∞

� Λ

0
fdx� Λ

0
gdx
≈ limΛ→∞

Λ/(2π)
� 2π

0
f(x)dx

Λ/(2π)
� 2π

0
g(x)dx

=

� 2π

0
f(x)dx� 2π

0
g(x)dx

. (32)

– Rather than defining R(f, g) as a Λ limit, we could simply do the
integrals from 0→ 2π.

– In our example, the problem has redundancy. It’s ‘natural’, for
periodic functions, to take ratios only by integrating over the pe-
riod of the function. In this case, we are integrating over
path space and not over x.

� Integration over a period:

– For the example of periodic functions, we regulate the theory by
limiting the integral to the period. Formally, we can write regu-
lated integrals for periodic functions as

Ir(f) =

� ∞
0

dxf(x)δ[ x
2π

]0 (33)

where the floor function [ x
2π

] is the greatest integer less than x
2π

.

– Notice the trick of integrating over all values but using a delta
function to restrict the integral to a single period.

� Analogy between gauge (local) symmetry and periodicity in path inte-
gration:

– Note that the analysis of ghosts is much simpler using path inte-
grals than using canonical quantization methods.

– The path integral over vector (gluon) fields is written as

Z =

�
[DAµa ]ei

�
d4xL(Aµa) (34)

This is an integral over paths.

– Gauge invariance can be expressed as�
d4xL (G(Aµa)) =

�
d4xL(Aµa) (35)

where G(Aµa) is a gauge transformation of Aµa . That’s analogous
to a translation by 2nπ.
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– Path space can be formally expressed as a set-product of a set
(‘slice’) of gauge-inequivalent paths, with the full set of gauge
transformations, I×G. Here G is analogous to the n that appears
in the periodicity 2nπ and I is analogous to the interval [0, 2π).

– So, in imitation of eq. (33) for defining a regulated integral Ir of
periodic functions, we define

Zr =

�
[DAµa ]ei

�
d4x(Aµa)δ(Gfix(Aµa)) (36)

where Gfix(Aµa) = 0 is the gauge-fixing equation analogous to
[ x
2π

] = 0 in eq. (33), which selects a slice of path space where all
paths are gauge-inequivalent.

� From delta function to ghosts:

We see that our path integrals have been regulated by inserting a delta-
function term. Can we rewrite this to put things in the original form?
Namely,

Zr =?

�
[DAµa ][DB]ei

�
d4x(Aµa)+

�
d4xLg(Aµa ,B) (37)

where B are some new fields that are introduced and Lg is an extra
term in the Lagrangian.

The answer is ‘yes’. Here’s a hint. A delta-function can be converted
to an exponential integral.

δ(x) =
1

2π

� ∞
−∞

eikxdk. (38)

We’ve converted the delta function into an integral over an exponential
function.

Things are a bit hairier when the delta function appears in the form
δ(h(x)). Then you need to change variables to y = h(x) and you end up
with an exponential integral times an inverse Jacobian determinant (for
the change of variables). This too, can be converted into an exponential
form but that’s more subtle.

The end result is that we have a path integral with some new fields and
a modified Lagrangian. The new fields are known as ghost fields.

Just like counterterms, ghost fields are used as a trick. Fadeev and
Popov invented this technique in order to simplify calculations. The
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gauge theory is Lorentz invariant, so at all sorts of steps in the calcula-
tions, expressions can be simplified using Lorentz invariance. However,
in order to properly regulate the calculations, the gauge must be fixed.
For example, in QED we sometimes pick a gauge where A0 = 0. In this
gauge the Lorentz invariance is no longer apparent (we say the theory
is not manifestly Lorentz covariant) and calculations can’t be simpli-
fied using the methods of Lorentz invariance. Fadeev and Popov were
able to use their method to choose a Lorentz-invariant gauge-fixing ex-
pression, but at the expense of introducing ghost fields (which aren’t
needed in QED).
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