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1 Introduction

The PHYSICS method (aka ‘scientific method’):

� Find ‘the fundamental laws’. e.g. quantum mechanics, Lorentz invari-
ance, SU(3) invariance, Maxwell’s equations etc., the Action principle
(leading to Lagrange’s equations in classical mechanics), etc.

� Calculational methods for deriving consequences of the laws. e.g. Feyn-
man diagrams

� Comparison with experiments

The steps of this method are tightly intertwined. Generally experiments lead
to laws, and then the laws are tested on other experiments. But without cal-
culational methods, neither direction is possible so there are often extended
periods of time after new laws are hypothesized, where calculational methods
are developed from them.

Over the past 120 years or so, starting with the law of Lorentz invariance,
one of the favorite calculational method for inferring new laws, has been the
use of groups (symmetries) and their linear representations:

D(g1)D(g2)v = D(g1 ◦ g2)v (1)
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where g1 ◦ g2 denotes the composition of two group elements (e.g. a rotation
followed by a boost), v is a vector in a vector space (the representation space)
and D(g1) is a matrix associated with the group element g1.

The standard model is the current best theory of the fundamental
symmetry groups of nature, their representations as particles and
their laws of interaction governed by field theory.

Field theory can either be regarded as a combination of the action principle
combined with canonical commutation relations that create a bridge from
particles to fields or as a path integral over fields whose Green functions
create a bridge from particles to moments of the path integral. In both
cases, the key mathematical encapsulation of the theory, is the Lagrangian.

Ingredients of the standard model (as implemented by the Lagrangian):

� Lorentz invariance

� Local SU(3) invariance [strong interactions]

� Local SU(2) x U(1) invariance [weak interactions and electromagnetism]

� Broken SU(2) x U(1) symmetry (the Lagrangian is symmetric but the
observer has to pick a preferred vacuum)

� Bosons

– (Lorentz-) Scalar boson – the Higgs particle

– (Lorentz-)Vector bosons

* Gluons – adjoint representation of SU(3). The symmetry
isn’t broken, so all 8 gluons are simply designated as
Aa.

* Electroweak bosons – adjoint representation of SU(2) x U(1).
The symmetry is broken, so all 4 electroweak bosons
are given different names: W+,W−, Z, A, the last of
these being the photon.

� Spin-1
2

Fermions – quarks, charged leptons (electron, muon, tau), neu-
tral leptons (electron-neutrino, muon-neutrino, tau-neutrino). Each of
these transform in irreducible representations of SU(3) and SU(2)
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The history of weak-interaction physics mostly has to do with this last item
(the fermions), much of which is covered in Thomson chapters 11-14. How-
ever, once the electroweak model had been developed by Weinberg and oth-
ers, people began studying interactions of W± and Z mesons, as well as the
Higgs bosons, whose properties and scattering amplitudes are discussed in
Thomson chapters 15-17.

We will introduce the Lagrangians for weak interactions. As a reminder,
we had derived the strong-interaction Lagrangian by demanding local SU(3)
invariance, and obtained

The group-properties are contained in the structure constants fabc and the
matrices T aij. The form of this strong-interaction Lagrangian looks fairly
simple partly because the gluon fields are all indexed – e.g. Aµa . By contrast,
the SU(2) x U(1) Lagrangian terms look considerably more complicated,
largely because each vector boson is separately identified. In addition, the
SU(2) x U(1) Lagrangian has a much richer fermion sector which includes
not only quarks but also leptons. We’ll start with a discussion of the SU(2)
x U(1) representations of fermions.

2 Fermion kindergarten

Here is a review of some basic fermion facts.
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2.1 2-component spinor massless Dirac equations; i.e.
Weyl equations

Define two 2-component quantities (usually called spinors but think of them
as 2-vectors in a vector space). For simplicity, imagine we live in a 2D
spacetime x = (t, z)

ψR(x) =

(
ψ1
R(x)
ψ2
R(x)

)
ψL(x) =

(
ψ1
L(x)
ψ2
L(x)

)
(2)

We declare that they satisfy two separate equations which we call the massless
Dirac equations or more commonly, the Weyl equations.

(
(i∂t + i∂z)ψ

1
R(x)

(i∂t − i∂z)ψ2
R(x)

)
=

(
0
0

)
. (3)

(
(i∂t − i∂z)ψ1

L(x)
(i∂t + i∂z)ψ

2
L(x)

)
=

(
0
0

)
. (4)

If we can find a linear transformation on ψR etc., which preserves the form
of the Dirac equation under a change of reference frame, then we say the
Dirac equation is Lorentz invariant. We will show how this works for the
boost transformations. An example of a boost transformation is the change
of coordinates and fields between a reference frame at rest, and another
reference frame moving at constant velocity v. The key requirement for
these transformation laws, is that they follow the group composition rules
for the Lorentz group.

Propose the following transformation law for boosts of ψR and ψL.

ψR(x′) =

(
e−

β
2ψ

′1
R

e
β
2ψ

′2
R

)
(x′) ψL(x′) =

(
e
β
2ψ

′1
L

e−
β
2ψ

′2
L

)
(x′). (5)

where x′ = (t′, z′) = (t cosh β+z sinh β, t sinh β+z cosh β) and β = tanh−1(v).

Start by applying the chain rule to the right-handed Weyl eq. (3). For
example,
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∂tψR(x) =
∂

∂t
ψR(x) =

(
∂t′

∂t

∂

∂t′
+
∂z′

∂t

∂

∂z′

)
ψR(x′)

=

(
cosh β

∂

∂t′
+ sinh β

∂

∂z′

)
ψR(x′)

(6)

Then apply the field transformation equation (5) to get

(
e
β
2 0

0 e−
β
2

)(
(i∂t′ + i∂z′)ψ

′1
R (x′)

(i∂t′ − i∂z′)ψ
′1
R (x′)

)
=

(
0
0

)
. (7)

Dividing by the first matrix, we end up with the right-handed Weyl equation
(3) again, so we’ve now shown that the equation is boost-invariant.

Similarly, we can show that the left-handed Weyl equation (4) is boost-
invariant.

2.2 Dirac mass terms

So far, these equations don’t have mass terms – i.e., terms without deriva-
tives. Suppose we try to extend the right-handed Weyl equation to:(

(i∂t + i∂z)ψ
1
R(x)

(i∂t − i∂z)ψ2
R(x)

)
= m

(
ψ1
R(x)

ψ2
R(x)

)
. (8)

Then apply a boost transformation to obtain(
e
β
2 0

0 e−
β
2

)(
(i∂t′ + i∂z′)ψ

′1
R (x′)

(i∂t′ − i∂z′)ψ
′1
R (x′)

)
=

(
e−

β
2 0

0 e
β
2

)
m

(
ψ

′1
R (x′)
ψ

′2
R (x′)

)
. (9)

This is NOT the same form of equation as eq. (8). The diagonal matrices
differ on the left and right sides so this equation is NOT Lorentz invariant.
However, remember that

ψL(x′) =

(
e
β
2ψ

′1
L

e−
β
2ψ

′2
L

)
(x′) =

(
e
β
2 0

0 e−
β
2

)(
ψ

′1
L (x′)
ψ

′2
L (x′)

)
(10)
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So if we replace eq. (8) by(
(i∂t + i∂z)ψ

1
R(x)

(i∂t − i∂z)ψ2
R(x)

)
= m

(
ψ1
L(x)

ψ2
L(x)

)
, (11)

then the boosted equation will be(
e
β
2 0

0 e−
β
2

)(
(i∂t′ + i∂z′)ψ

′1
R (x′)

(i∂t′ − i∂z′)ψ
′1
R (x′)

)
=

(
e
β
2 0

0 e−
β
2

)
m

(
ψ

′1
L (x′)

ψ
′2
L (x′)

)
. (12)

which is indeed the same form as eq. (11). We’ve restored Lorentz invariance,
but we now require both ψR and ψL in a single equation. In other words, our
massive theory must have 4, instead of 2, components.

We end up with a combination of equations that look like this:(
(i∂t + i∂z)ψ

1
R(x)

(i∂t − i∂z)ψ2
R(x)

)
= m

(
ψ1
L(x)
ψ2
L(x)

)
(

(i∂t − i∂z)ψ1
L(x)

(i∂t + i∂z)ψ
2
L(x)

)
= m

(
ψ1
R(x)
ψ2
R(x)

)
.

(13)

That’s the massive Dirac equation, but written a bit differently than we’ve
done before. In the usual Dirac equation, we have 4 components indexed
from 1 through 4 whereas in the above equations, our 4 components are
written as two 2-spinors labelled L and R and each with components 1 and
2.

IT TURNS OUT IN MODERN WEAK-INTERACTION PHYSICS
TO OFTEN BE MORE CONVENIENT TO USE THIS R AND L
NOTATION.

In more conventional 4-component Dirac notation, the left- and right-handed
2-spinors are equivalent to projections of the form

ψL ↔ PLψ

ψR ↔ PRψ
(14)

where γ5 is a 4x4 gamma matrix and ψ is a 4-component Dirac spinor.
Also PL = 1

2
(1− γ5) and PR = 1

2
(1 + γ5). These projections are known

as chirality projections.

Here is an example. In the Weyl representation of gamma matrices

γ5 =

(
−I 0
0 I

)
(15)
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so that

PR =

(
0 0
0 I

)
, PL =

(
I 0
0 0

)
. (16)

Note that each matrix entry is a 2 x 2 matrix. Then

PR

(
ψL
ψR

)
=

(
0
ψR

)
, PL

(
ψL
ψR

)
=

(
ψL
0

)
. (17)

Although the vectors all have 4 components, the projected vectors can be
naturally identified with 2-component spinors.

2.3 Parity

So far, we’ve only discussed rotations and boosts. But most of our experience
with natural laws, tells us we can’t distinguish left from right. That’s called
parity invariance. The transformation that accomplishes this, must take
(x,y,z) to −(x,y,z), while leaving the t-component alone. There’s a simple
group property. Do a parity-transform twice, and you end up where you
started. So we describe the transformation under parity as, for example,

ψ′L(t′, x′, y′, z′) = PψL(t,−x,−y,−z) (18)

where P2 = I.

In 4 spacetime dimensions, the parity transformation is distinct from all ro-
tations and boosts, so it is theoretically possible for a theory to be Lorentz
invariant but not parity invariant. In fact, that happens with weak interac-
tions.

In 2 spacetime dimensions, there is no distinct parity operation, but for
simplicity I’ll pretend there is so that we illustrate the issue of interest. Start
with the right-handed Weyl equation(

(i∂t + i∂z)ψ
1
R(x)

(i∂t − i∂z)ψ2
R(x)

)
=

(
0
0

)
(19)

and let z → −z. Then ∂z → −∂z so we have the transformed equation

(
(i∂t − i∂z)ψ1

R(x)
(i∂t + i∂z)ψ

2
R(x)

)
=

(
0
0

)
. (20)
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This doesn’t look the same as the original equation – although in point of
fact, we could fix this by requiring the first and second components of ψR
to be exchanged under a parity transformation. It turns out in 3 spacial
dimensions that this type of transformation can’t be found.

Again, for 4-component Dirac fields we can have the parity operator exchange
left- and right-handed spinors and thus restore parity invariance.

2.4 Majorana masses and one of the unknowns of the
standard model

We tried to add a mass term to the two-component Weyl equation and dis-
covered that this term broke Lorentz invariance. We concluded – incorrectly
– that the only way to introduce a mass term was to promote the Weyl
equation into a full-blown 4-component Dirac equation.

There’s another way. Consider the equation(
(i∂t + i∂z)ψ

1
R(x)

(i∂t − i∂z)ψ2
R(x)

)
= m

(
ψ∗2R (x)
ψ∗1R (x)

)
(21)

where we’ve complex-conjugated the RHS and also exchanged the two com-
ponents. When we apply the boost transformation, this becomes(

e
β
2 0

0 e−
β
2

)(
(i∂t′ + i∂z′)ψ

′1
R (x′)

(i∂t′ − i∂z′)ψ
′1
R (x′)

)
=

(
e
β
2 0

0 e−
β
2

)
m

(
ψ

′∗2
R (x′)
ψ

′∗1
R (x′)

)
. (22)

We can divide both sides by the matrix(
e
β
2 0

0 e−
β
2

)
(23)

and end up with the same form of equation we started with. So we’ve shown
a 2-component equation which is boost invariant. We didn’t actually use the
fact that the RHS was conjugated.

However, if we also were to check rotation invariance, it would turn out that
the conjugation is required (the boost matrix is replaced by a matrix whose
components are complex).

This mass term is known as a Majorana mass. Neutrinos, which are so light
they were once thought to be massless, has some characteristics that suggest
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it is a 2-component particle with a Majorana mass. If so, we would refer
to this as a Majorana neutrino. To date, we don’t know if neutrinos are
Majorana particles.

3 The Fermion sector of the electroweak in-

teractions

Notation:

� ψ̄ ≡ ψγ0 where the gamma matrices are the 4x4 Dirac matrices

� /A ≡
∑3

µ=0Aµγ
µ

� Similarly /∂ ≡
∑3

µ=0 ∂µγ
µ

� Li is a left-handed lepton pair such as

(
νL
eL

)
where the entries are each

‘chiral’ fields (by which I mean PLψ where ψ is a 4-spinor field). The
subscript i denotes the generation (related to flavor).

� QI is a left-handed quark pair such as

(
uL
dL

)
� eR, νR, uR, dR are all right-handed fields (i.e., right-handed projections).

The first two are leptons and the last two are quarks.
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� B and W 3 are neutral electro-weak vector bosons that are linear com-
binations of the more familiar neutral bosons A and Z. Specifically,

Bµ = cos θwAµ − sin θwZµ

W 3
µ = sin θwAµ + cos θwZµ

(24)

where the Weinberg angle θW is defined by

tan θw =
g′

g
(25)

� Ya are numbers known as the hypercharge, and which, like charge,
characterize the particles’s U(1) representation.

This is all very messy. Let’s look at just at terms involving the neutral bosons
W 3 and B.

L = iL̄1

(
/∂ − ig /W 3τ 3 − ig′YL /B

)
L1 + iē1R

(
/∂ − ig′Ye /B

)
e1R + iν̄1R

(
/∂ − ig′Yv /B

)
ν1R + ...

(26)

L1 =

(
νeL
eL

)
. Both eL and νL are left-handed spinor fields. You might

wonder what L2 is. There, you replace the electron and electron-neutrino,
by the muon and muon-neutrino.

τ 3 =
1

2

(
1 0
0 −1

)
(27)
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In experiments, we end up measuring the particles associated with linear
combinations of the fields W 3 and B – namely, A and Z using the defining
equations above

Bµ = cos θwAµ − sin θwZµ

W 3
µ = sin θwAµ + cos θwZµ

(28)

with the Weinberg angle θW is defined by

tan θw =
g′

g
. (29)

So if we expand, making the transformation to the photon (A) field and Z
field we get

L = iēL(/∂ + ig′ /A)eL + iēR(/∂ + ig′ /A)eR−

iēL(
g′2 − g2

2
√
g2 + g′2

/Z)eL + iēR(
g′

2
√
g2 + g′2

/Z)eR+

ν̄Le
(
/∂ + ig /Z

)
νLe

(30)

There are a number of important points here.

3.1 V-A interactions

Section 11.3 of Thomson discusses the “V-A” structure of weak interactions.
The idea is this: Under a parity transformation, a vector V = (v1, v2, v3)
transforms to (−v1,−v2,−v3). The electric field is an example of a vector.
On the other hand, consider two vectors V1 and V2 and their cross product
W = (w1, w2, w3) = V1 × V2. Under a parity transformation, W transforms
to itself, i.e. (w1, w2, w3). We call W an “axial vector”. An example is the
magnetic field B.

Roughly speaking, “V” interactions preserve parity and “A” interactions
don’t.

In the language of 4-fermions, an interaction that involves the gamma matrix
γ5 is typically indicative of an axial term and thus a parity-breaking term.
The γ5 matrix is involved in the chiral projection operators PL and PR which
project out the left-handed and right-handed fermions.

11



� In Eq. (30) the electron left-handed and right-handed derivative and
photon interactions are identical for left and right. These are “V” types
of term and are parity-conserving.

� Furthermore, because the left- and right- handed terms are identical,
these can be combined into the familiar expression involving a single
4-component Dirac fermion.

� In Eq. (30) the Z-boson interaction is different for the left and right
electrons, hence there will be parity-violation.

� Only the left-handed neutrinos appear.

3.2 SU(2) invariance

� All the terms are SU(2)-invariant. The right-handed fermions are
SU(2)-singlets (i.e., scalars under an SU(2)-transformation). The left-
handed fermions are in an SU(2)-doublet. So if you transform the
left-handed neutrino and electron fields as

e′L = cos θeL + sin θνL

ν ′L = − sin θeL + cos θνL

e′R = eR

ν ′R = νR

(31)

you’ll get – for the noninteracting terms (i.e. the kinetic terms)

L = iē′L/∂e
′
L + iν̄ ′e′L/∂ν

′
e′L + iē′R/∂e

′
R + iν̄ ′eR/∂ν

′
eR − ... (32)

The interacting term is suppressed for now, because we haven’t dis-
cussed the transformation of W .

� We don’t see a Dirac mass term for the electron or neutrino. That’s
because such a term would violate SU(2)-invariance. We’d need some
term like mēLeR. But this would transform to

m (cos θe′L + sin θν ′L) e′R (33)

Of course we would need to check other terms but it turns out that no
combination of quadratic terms is SU(2)-invariant. THEREFORE
SU(2)-INVARIANCE PREVENTS FERMIONS FROM HAV-
ING DIRAC MASSES.
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4 The Boson Sector

When we studied the strong interactions we concluded that the local SU(3)
invariance led to a Lagrangian that looked like the following:

The boson sector of this theory is comprised of the the terms on the first and
third lines of the RHS. The form of the Lagrangian looks fairly simple partly
because the gluon fields are all indexed – e.g. Aµa . By contrast, the SU(2) x
U(1) Lagrangian terms look considerably more complicated, largely because
each vector boson is separately identified.
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These two contributions to the Lagrangian constitute the boson sector. The
vector bosons are W+,W−, Z, A and the Higgs (scalar) boson is h. There
are several new parameters:

� v is the value by which we have to shift the Higgs field in order to
expand around our vacuum of choice. v is sometimes called the vacuum
expectation value or VEV

� e is the ordinary electromagnetic coupling constant

� MZ , MW and mh are respectively the masses of the Z, W± and h with
MZ = MW

cos(θW )

One immediate prediction of the theory is that the W± bosons should be
lighter than the Z boson.

5 Feynman rules and the Fermi theory

(See Thomson Section 11.5). Let’s examine what the Feynman rules tell us.
Recall the weak interaction Lagrangian for leptons and quarks.
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Remember that the scattering amplitudes are computed by joining vertices
(the non-quadratic terms) with propagators (the quadratic terms).

For example, consider the LHS of the diagram

The top vertex comes from a term with a product of fields for νe, e and W .
We see that the term of interest is

gL̄i /W
a
τaLi. (34)

The detailed vertex value comes from evaluating the Dirac matrices including
the chiral projection operator (which projects the 2 left-hand components of
the leptons ) and the SU(2) Pauli matrices (τ).

Similarly the bottom vertex comes from a product of W with the two quark
fields b and u, which form the constituents of – for example – a proton,
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corresponding to the Lagrangian term

gQ̄i /W
a
τaQi. (35)

The vertices are joined by the W propagator, whose value is proportional to

1

q2 −m2
W

(36)

where q = p1 − p3 and mW is the mass of the W -boson (80.4 GeV). Then
the value of the scattering amplitude (which doesn’t take into account the
details of incoming and outgoing momentum density profiles) is roughly

M = g2
V1 × V2
q2 −m2

W

(37)

where V1 and V2 are the two vertices (modulo the coupling constants)

This diagram would represent, for instance, a collision of a neutrino with
a neutron, resulting in an electron and a proton (if you convert a neutron’s
down quark into an up quark, you get a proton). In most ‘ordinary’ collisions
(e.g. old-fashioned labs, irradiation, atomic bombs ...) the typical energies
are very small so |q| << 80.4GeV .

In such a case, the W -propagator is approximately −0.00015GeV−2 and
the amplitude is approximately independent of the momenta. We can then
rewrite the amplitude in a form which, by convention, looks like

M =
GF√

2
V12 (38)

where GF is the so-called “Fermi constant” and has the value GF = 1.16638×
10−5GeV−2.

Until the 1960’s, physicists had worked backwards from experiment, to con-
clude that the weak interaction Lagrangian was actually a product of 4
fermion fields as shown on the RHS of the above diagram and with an inter-
action strength given by the Fermi constant. They concluded this because
of the momentum-independence of the amplitude. That theory was known
as the “Fermi theory”. It was a momentous triumph of intellect to guess
that the correct theory involved the exchange of a very massive particle (the
W boson) and furthermore, that this particle acquired its mass through the
Higgs mechanism. The discovery of the Higgs boson ultimately was the last
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frontier for confirmation of the entire framework responsible for the Fermi
interaction.

One reason that ‘renormalizability’ was ‘de rigeur’ in the 1970’s and later, is
that the death knell of the Fermi theory started when field theorists realized
that the Fermi Lagrangian was non-renormalizable. By demanding renor-
malizability, physicists eventually were led to the current standard model.
This was such a resounding success that until recently, renormalizability was
regarded as sacred. That viewpoint has shifted a bit, but with some revision-
ist history pointing out that Fermi theory had been remarkably successful
for several decades notwithstanding its non-renormalizability.
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