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Einstein’s equation refers to the ‘energy momentum tensor’ Tµν . Usually, we
start by giving information about that tensor, and then deriving the metric
tensor – which gives us the geometry.

So what is that tensor and how do we know or measure it?

1 Historical comments

1.1 Similarity of Newton’s laws and Einstein’s equa-
tion

Newton’s 2nd law:
m~a = ~F . (1)

Einstein’s equation:

Rµν −
1

2
Rgµν = 8πGTµν (2)

Newton told us “if you know the force on an object, then you can calculate
its acceleration”. Einstein tells us “if you know the energy-momentum tensor
somewhere, then you can calculate how spacetime is shaped (and therefore
motions of objects in spacetime)”.
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The equations are analogous but there are some conceptual differences that
needn’t concern us now.

In Newton’s day we could have spoken about ‘designer forces’. For example,
suppose I want my wagon to experience a particular motion (speed, acceler-
ation, distance etc. along a path). By plugging into the LHS, I can figure
out the force. Then, with vast experience of how forces come into being, I
could engineer an engine that caused the desired motion.

The same sort of thing could be done with Einstein’s equation. I look for
some desirable properties of spacetime and then that gives me the energy-
momentum tensor. The question is whether we can engineer such a tensor?

1.2 Example: perfect fluid

In special relativity, momentum and energy together form a 4-vector. His-
torically, the EM tensor was defined as the 4-matrix which gives the flow
of energy and momentum in 4 perpendicular directions. That kind of thing
shows up a lot in fluid dynamics. The very simplest fluid is “dust”. By this
we mean “a bunch of non-interacting particles whose mass density is ρ. For
example, if there are N particles in a volume V , and each particle has mass
m, then ρ = mN/V . Here is the rest-frame EM tensor for “dust”

T dust
µν =


ρ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 . (3)

In other frames of reference, the tensor is transformed by Lorentz transfor-
matons.

When the particles interact, the system dynamics can be computed “on av-
erage” if we characterize the system by both density and pressure. Here is
the rest-frame EM tensor for a “perfect fluid”.

Tµν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (4)

ρ is the rest-frame energy density and p is the rest-frame pressure in each
of the three directions. In a moving reference frame, all of these quantities
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are transformed by appropriate Lorentz transformations and some of the 0
components become non-zero.

A mathematically compelling way of deriving that tensor, was from the La-
grangian formulation of mechanics. Noether showed that this tensor (as well
as energy and momentum separately) showed up naturally as a consequence
of the spacial and temporal invariance of the equations of motion.

For example, for the perfect fluid, the equations of motion can be used to
prove the 4 conservation equations

∂µTµ0 = 0; ∂µTµ1 = 0; ∂µTµ2 = 0; ∂µTµ3 = 0 (5)

In somewhat more familiar form, these can be re-cast as the Euler equation
of fluid mechanics:

ρ [∂t~v + (~v · ∇)~v] = −∇p (6)

where ~v is the velocity of the system relative to the rest frame.

2 According to Carroll ...

2.1 Pure gravity and matter

Inspired by history, let’s look at a Lagrangian formulation of physics includ-
ing gravitation. In the Lagrangian formulation of gravity, we represent the
gravitational physics by a gravitational field gµν(t, ~x). We can think of

this as a field in the same way that the electric field ~Eµ(t, ~x) is a
field. . This field can be identified with metric tensor and we can therefore
interpret everything geometrically.

Write the action as

S =
1

16πG
SH + SM (7)

where the first term represents pure gravity and the second term represents
matter. What we mean by matter is “all the stuff in the universe which we
thought was there except for gravity”. For example, electromagnetic fields,
quarks, fluids (i.e, aggregation of more basic forms of matter) etc. Then pure
gravity is all the rest.
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Digression on the distinction between gravity and the other
stuff

By analogy, think of the electromagnetic field as pure electromagnetism
and treat it separately from everything else (for example, electrons and
other charged matter but ALSO uncharged stuff like neutrons).

In the full gravitational action, we regard SM as ‘the source of gravity’.
Unlike electromagnetism, where only charged objects are sources of
electricity, in a gravitational theory, all stuff (except ‘pure gravity’) is
a ‘source of gravity’.

One natural question is then “why isn’t gravity, like other stuff, a source
of pure gravity?” Loosely thinking, you regard mass as a source of
gravity, and you equate energy to mass, so surely the gravitational
energy ought to be a source of gravity. After all, an electromagnetic
field is a source of gravity, so why shouldn’t the gravitational field be
such a source?

It turns out that this question is largely one of semantics. The LHS of
Einstein’s equation is ‘nonlinear’ in the gravitational field. In deriva-
tions of Einstein’s equations, it readily becomes apparent that ‘gravity
acts on itself’. However, both gravity and its source become tangled
with one another in such a way that the net result is captured in the
LHS of Einstein’s equation. So in fact, gravity is a source for gravity.
But it isn’t possible (or at least not obvious how) to isolate the grav-
itational source so that it can be sensibly included as a term on the
RHS of the Einstein equation.

Einstein’s great insight, was that the laws of physics should look the same
regardless of the coordinate system. This statement is a sleight of hand!
What it really means is this: find another way of expressing the laws of
physics so that instead of using familiar quantities like ∂µ, you use new
quantities like Dµ – the covariant derivative. These new quantities are picked
so that they depend on coordinates in such a way that under coordinate
transformations, the old equations look like the new ones.

So far, there isn’t any content here. What matters, is that these new quanti-
ties have to be constrained by geometrical considerations, and that one can
always find a set of coordinates where those new quantities look just like the
old ones (that’s the principle of equivalence) . This is all highly nontriv-
ial and not even well-defined unless you insist on some simplicity (or other)
assumptions.
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Be that as it may, here’s an example: Consider a pre-gravitation physical
theory of scalar fields.

Sφ =

�
d4x

[
−1

2
∂µφ∂

µφ− V (φ)

]
(8)

If you change coordinates, that expression changes form. However, the fol-
lowing expression maintains its form when changing coordinates.

SM =

� √
−gd4x

[
−1

2
DµφD

µφ− V (φ)

]
(9)

where, by definition, DµφD
µφ ≡ gµνDµφDµφ and g (appearing in the square-

root) is defined as the determinant of the metric tensor (the determinant
is negative) and Dµ is a covariant derivative defined using the Christoffel
(connection) coefficients.

Moreover, when the metric is flat, it turns out that SM = Sφ.

2.2 Variation of the action

Remember that the equations of motion are obtained by varying the fields
or paths in the action and finding the extrema. So, in particular, if we vary
the action by changing the metric (aka gravitational field), we’ll end up with
a set of equations of motion. If we look at the example of SM , we see that
the metric tensor appears in the Lagrangian, so we have to see what happens
when we change gµν . Of course, there is also a change in the SH part of the
action, but ignore that for a moment.

We use the notation δ
δgµν

to indicate the variation with respect to the field.
This terminology can be made mathematically precise.

Then we define

Tµν = −2
1√
−g

δSM
δgµν

(10)

That’s the energy-momentum tensor. When we also vary SH we end up with
Einstein’s equation.
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2.3 Why is this called the energy-momentum tensor?

I think this is where Carroll shines. He acknowledges that this definition
of the EM tensor is non-traditional. He explains how it connects to the
traditional definition. First, it has the right dimensions (mass) for a gravity-
source. Second, it’s symmetric (like traditional definitions). Third, it’s a
tensor which transforms under Minkowski transformations, just the same
way as the traditional EM tensor. Fourth, and probably most important, in
Minkowski space (flat space without gravity), it is equal the traditional EM
tensor.

What is the traditional EM tensor? It shows up in various equations of
motion, but formally it is obtained through a conservation law. Noether
showed a general theorem for Lagrangian systems. When the Lagrangian
(more generally, the action) is invariant under a symmetry transformation
(transformations of fields or paths), then there is an associated quantity
known as a ‘conserved current’, from which one can derive a conservation
law. For translations in space and time, the 4 conserved currents are the 4
rows of the EM tensor, and the conserved quantities – energy and momentum
– are integrals associated with each row.
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