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“But even aside from the potential impact of general relativity on
astronomy and other branches of physics, the theory in its own
right makes many remarkable statements concerning the structure
of space and time and the nature of the gravitational field. After one
has learned the theory, one cannot help feeling that one has gained
some deep insights into how nature works.” - Robert M. Wald

1 The Formalism of General Relativity
The general theory of relativity assumes the following:

• Spacetime is a 4-dimensional continuum (manifold).

• The geometry of spacetime is determined by Einstein’s field equation.

• In the absence of (non-gravitational) forces, the trajectories of test parti-
cles are the geodesics of the geometry.

Einstein’s equation and the geodesic equation are disucssed in Sections 1.1 and
1.2, respectively.

1.1 Einstein’s Field Equation
In SI units, Einstein’s field equation is written as follows:

Gµν =
8πG

c4
Tµν (1)

where:

• G is Newton’s gravitational constant.

• c is the speed of light.

• Gµν is the Einstein tensor, defined by

Gµν = Rµν −
1

2
Rgµν (2)

where
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– The fields gµν , Rµν , and R are elements of Riemannian geometry.

– The field Tµν represents physical quantities, i.e. matter and energy.

• The names associated with these fields are as follows:

– gµν is called the metric tensor (a.k.a the fundamental tensor)

– Rµν is called the Ricci tensor (a.k.a. the Ricci curvature)

– R is called the Ricci scalar (a.k.a. the scalar curvature)

– Tµν is called the energy-momentum tensor (a.k.a the stress-energy
tensor)

Formally, the fields gµν , Rµν , and Tµν are tensor fields of type (0,2), as indicated
in index notation by the presence of the two subscripts. By contrast, an abitrary
tensor field of type (2,0) would be written as Aµν and a tensor field of type (1,1)
would be written as Aµνor A ν

µ . In this terminology, the scalar field R is a tensor
field of type (0,0), i.e. no indices. On a spacetime manifold, it is customary for
indices to range over the values 0,1,2,3, where the index 0 is associated with the
temporal dimension, and the remaining indices are associated with the spatial
dimensions.

Any tensor field with two indices may be represented by a 4 × 4 matrix, in
which each element is a smooth, real-valued function of some general spacetime
coordinates qµ, µ = 0, 1, 2, 3. However, matrices representing different types of
tensor fields cannot be summed, despite having the same number of rows and
columns. We will denote the matrix representation of any such tensor by placing
its symbol in square brackets, e.g. the matrix representation of the metric tensor
is denoted by [gµν ].

The scalar field R is a single, smooth, real-valued function of the spacetime
coordinates..

1.1.1 The Metric Tensor

For the sake of clarity, the matrix representation of a generic metric tensor is
written out explicitly as

[gµν ] =


g00 g01 g02 g03
g10 g11 g12 g13
g20 g21 g22 g23
g30 g31 g32 g33

 (3)

Note that the metric tensor is symmetric, i.e. gµν = gνµ, which is reflected in the
fact that [gµν ] is a symmetric matrix. Thus, only n(n+ 1)/2=10 of the n2 = 16
functions are unique. One may regard g00 as a purely temporal component, the
off-diagonal elements g0i = gi0, i = 1, 2, 3 as spatio-temporal components, and
the remaining elements as purely spatial components. (The same break-down
applies to the fields Rµν and Tµν .)
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Metric Signature On a Riemannian manifold, the metric tensor is positive-
definite at all points and for all coordinate systems. In other words, the eigen
values of the metric tensor are positive everywhere on the manifold. By contrast,
on a spacetime manifold the metric tensor is indefinite, with the sign of the
temporal eigenvalue being opposite to the sign of the spatial eigenvalues. This
is referred to as Lorentz signature . There are two conventions in use in the
literature, either (+,−,−,−) or (−,+,+,+). The choice is arbitrary, but must
be used consistently, once made.

Distance on the Manifold Given two points on the manifold, qµ and qµ +
dqµ, where the dqµ, µ = 0, 1, 2, 3 are differential displacements, the differential
distance ds between the two points is given by a quadratic form called the
metric, as follows:

ds2 = gabdq
adqb (4)

Indices appearing as both subscripts and superscripts, like a and b in the above
metric, are called dummy indices, implying summation over the values 0,1,2,3
(Einstein summation convention), so the expression 4 implies the sum of n2 = 16
terms, i.e.

gµνdq
µdqν =⇒

3∑
µ=0

3∑
ν=0

gµνdq
µdqν (5)

Length of a Vector Given any 4-vector field vµ, µ = 0, 1, 2, 3, its squared
length at any point in spacetime is given by

|v|2 = gabv
avb (6)

where the double summation is implied, as described above. Calculated in this
manner, the length is automatically corrected for curvature and/or arbitrary
choice of coordinates.

On a manifold with positive-definite metric, |v|2 as given by 6 is such that|v|2 ≥
0, where |v|2 = 0 iff vµ is the zero vector. On the otherhand, on a spacetime
manifold, one can have |v|2 > 0, |v|2 = 0, or |v|2 < 0. If using the convention
(+,−,−,−), the three possibilites indicate timelike, light-like (a.k.a null), and
space-like vectors, respectively. If using the other convention, the definitions of
time-like and space-like are swapped. In either case, |v|2 = 0 does not imply
that vµ is the zero vector.

Generalized Inner Product Given two 4-vectors fields vµ and wµ, their
inner product at any point in spacetime, taking into account curvature and/or
the choice of coordinates, is given by

(vµ, wν) = gabv
awb (7)
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Converting Tensor Fields to Other Types In the language of tensor fields,
a 4-vector field vµ is a tensor field of type (1,0). The metric tensor can be applied
so as to convert it to a tensor of type (0,1), as follows:

vµ = gµav
a

where a is a dummy index, implying the sum of four terms. Similarly, given a
tensor field Aµν of type (2,0), the metric tensor can be applied to convert it to
a tensor of type (1,1), as follows:

A ν
µ = gµaA

aν (8)

A second application of the metric tensor will convert the resultant tensor of
type (1,1) to a tensor of type (0,2), i.e.

Aµν = gaνA
a
µ (9)

In general, the metric tensor is applied once per index to be changed from a
superscript to a subscript. The two conversions above can thus be written in
one step, i.e.

Aµν = gµagbνA
ab (10)

The reverse process is accomplished using the inverse of the metric tensor. De-
fined by

[gµν ] := [gµν ]
−1 (11)

Then,

vµ = gµava (12)

and so on.

1.1.2 The Ricci Tensor and Ricci Scalar

The Ricci tensor is, roughly speaking, a measure of how the geometry in the
neighborhood of each point in spacetime differs from flatness. Like the metric
tensor, it may be regarded as a 4× 4 symmetric matrix of smooth, real-valued
functions, given by

Ruv = ∂νΓaµa − ∂aΓaµν + ΓaµνΓbab − ΓaµbΓ
b
νa (13)

where

• ∂ν is a short hand for ∂/∂qν

• The quantitiesΓξµv are the Levi-Civita connection coefficients (a. k.a.
Christoffel symbols), given by

Γξµν =
1

2
gξa (∂agµν + ∂νgµa − ∂µgνa) (14)
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where

– The index a is a dummy index, so each term in parenthases expands
to 4 terms.

– The connection coefficients are symmetric in their two subscripts.

– One may regard the entire connection, i.e. the collection of n3 = 64
connection coefficients, as a array of 4, symmetric 4× 4 matrices.

The Ricci scalar is obtained from the Ricci tensor, as follows:

R = tr {gµaRaν} = tr {Rµν} = Rbb (15)

where the indices a and b are dummies. Changing an upper and lower index to
the same letter (as on the extreme RHS) results in an implied summation. This
is called a contraction.

Alternate Method of Calculating the Ricci Tensor The Riemann-Christoffel
curvature tensor (a.k.a, Riemann tensor or curvature tensor) is calculated as
follows:

Rξµσν = ∂σΓξµν − ∂νΓξσµ + ΓξσaΓaµν − ΓξνaΓaσµ (16)

Then, the Ricci tensor is obtained by contracting on the first and third indices
of Rµνσξ, i.e.

Ruv = Raµaν (17)

If the Riemann tensor vanishes, i.e. Rµνσξ = 0, everywhere, then the manifold
(whether Lorentzian or Riemannian) is intrinsically flat. This is not necessarily
the case for the Ricci tensor.

1.1.3 The Energy-Momentum Tensor

The purely temporal, purely spatial, and spatio-temporal portions of the energy-
momentum tensor Tµν have different physical interpretations. More precisely,
common physical quantities are more readily assocated with Tµν = gµagbνTab.
Physical meaning may then be ascribed as follows:

• T 00 is the mass/energy density..

• T 0i, i = 1, 2, 3 is the ith component of momentum density.

• T ij , i, j = 1, 2, 3 are the components of the ordinary stress tensor.
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1.1.4 Implications

Based on the discussions in sections 1.1.1 through 1.1.3, Einstein’s equation 1
can be reqarded as a matrix equation, which, in turn, may be regarded as a sys-
tem of 16 coupled, second-order, non-linear, partial differential equations in the
metric tensor functions gµν , where only 10 of the equations are unique. Find-
ing a general solution for this system of equations is an analytically intractable
problem. However, exact solutions can be found in special physical situations,
wherein spacetime symmetries can be utilized to make the problem tractable.
We will return to this topic in Section 2.

1.1.5 Other Forms of the Field Equation

Trace-Reversed Field Equation Substituting 2 into 1, yields the form of
Einstein’s field equation often seen in the literature, i.e.

Rµν −
1

2
Rgµν =

8πG

c4
Tµν . (18)

From this, one can derived what is called the trace-reversed field equation:

Rµν =
8πG

c4

(
Tµν −

1

2
Tgµν

)
(19)

where

T = tr {gµaTaν} . (20)

Vacuum Field Equation It is immediately apparent from 19 that, if Tµν =
0, then

Rµν = 0 (21)

Since Tµν = 0 implies a vacuum, 21 is called the vacuum field equation. Any
point in spacetime where 21 holds is called Ricci flat. However, this does not
necessarily imply that spacetime is intrinsically flat at that point.

1.2 The Geodesic Equation
1.2.1 Curves on Manifolds

In terms of the general coordinates qµ, a smooth curve on a (pseudo-)Riemannian
manifold of dimension n can be represented parametrically by n functions qµ(λ), µ =
1, 2, ..., n, where λ is a parameter that is monotonically increasing (in one direc-
tion or the other) along the curve. The n functions together give the coordinates
at each point along the curve. The tangent vector to the curve at each point
along the curve is then given by

q̇µ :=
dqµ(λ)

dλ
(22)
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The squared length of the tangent vector is then given by 6, i.e.

|q̇|2 = gabq̇
aq̇b = gµν

dqa(λ)dqb(λ)

dλ2
=
ds2(λ)

dλ2
(23)

In general, the length varies with λ. However, on Riemannian manifolds, there
exists a preferred class of parameters that are linearly related to the distance s
along the curve, i.e.

λ = a s+ b =⇒ dλ = a ds =⇒ |q̇| = 1/a (24)

where a 6= 0 and b are constants. Thus, if restricted as in 24, the length of
the tangent vector does not vary with λ. Under these conditions, λ is called an
affine parameter.

On a spacetime manifold, things become a bit more complicated due to the
metric having Lorentz signature. Specifically, a curve is said to be time-like if
the tangent vector is time-like at every point along the curve. Light-like and
space-like curves are defined in the analogous manner. A smooth curve cannot
switch at some point from one class to another. Material particles travel on
time-like curves, massless particles travel on light-like curves, and there are no
known particles that travel on space-like curves.

Time-like curves can be affinely parameterized in the same manner as curves
on Riemannian manifolds. Typically, the choice is a = 1/c. With this choice,
dλ = ds/c := dτ , i.e. the parameter is the proper time, and q̇µ = dqµ/dτ is
the 4-velocity of a test particle moving along the curve. To be clear, in general
relativity q̇µ has a geometric interpretation as the tangent vector to a time-like
curve and a physical interpetation as the 4-velocity of a test particle moving
along that curve. In the latter case, the invariant quantity |q̇|2 = c2 can be
interpreted as the particle’s rest energy per unit mass.

The situation is quite different for light-like curves. Since ds = 0 everywhere
along light-like curves, λ cannot be affinely parameterized as prescribed by 24,
because then dλ = 0, so 22 and 23 are undefined. In fact, 22 tells us that 4-
velocity cannot be defined for massless particles. Instead, for light-like curves,
we may take λ to be any monotonically increasing parameter that is not related
to the distance s along the curve. For any such parameter, 23 tells us that
|q̇| = 0 everywhere along the curve, and therefore any such parameter satisfies
the criterion that the tangent vector be of the same length everywhere along
the curve. Clearly, for light-like geodesics, |q̇|2 = 0 and can thus we interpreted
as rest energy.

The preceding two paragraphs imply that, for all affinely parameterized
curves of physical interest, |q̇|2 is a constant of motion - a result that may
be summarized by

gabq̇
aq̇b = Kε (25)

where Kε = c2 for material particles and Kε = 0 for massless particles.
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1.2.2 Geodesics and the Geodesic Equation

The geometry of a Riemannian manifold determines a class of curves, called
geodesics, that minimize the distance between points on the manifold. For space-
time manifolds, there are time-like, light-like, and space-like geodesics, which
are special cases of the time-like, light-like, and space-like curves, respectively,
discussed above. Material particles on which no forces act - the effects of gravity
are embodied in the geometry - travel on time-like geodesics. Massless particles
travel on light-like geodesics. The time-like geodesics actually maximize the dis-
tance between points, and of course the distance along all light-like geodesics is
zero. The differences between the description of geodesics, above, are subsumed
in a more general definition: geodesics are paths of stationary action.

Regardless of whether we have a Riemannian manifold or a spacetime man-
ifold, the geodesics are solutions to the geodesic equation:

d2qµ

dλ2
+ Γµab

dqa

dλ

dqb

dλ
= 0 (26)

provided that λ is an affine parameter. Concerning this equation, the following
facts are worth noting:

• The geodesic equation 26 is actually a set of 4 coupled, second-order,
ordinary differential equations.

• A solution is a set of four functions qµ(λ), µ = 0, 1, 2, 3.

• In the second term on the left, a and b are dummy indices, so this term
expands to 16 terms (in general).

• In 3-dimensional, Euclidean space with λ = t, where t is Newton’s uni-
versal time, the geodesic equation 26 is Newton’s first law in arbitrary
coordinates.

• In spacetime, the geodesic equation is a generalization of Newton’s first
law, i.e. the equation of motion in the absence of forces.

• The geodesic equation can be derived from the Euler-Lagrange equation

d

dλ

(
∂L

∂q̇µ

)
=

∂L

∂qµ
(27)

where the Lagrangian L is kinetic energy per unit mass, given by

L =
1

2
|q̇|2 =

1

2
gab

dqa

dλ

dqb

dλ
=

1

2
gabq̇

aq̇b (28)

It is often very difficult to solve the geodesic equation 26 directly. However, as
shown in the next section, symmetries of the spacetime geometry lead to a metric
tensor in which many elements are zero, and the remaining are independent of
one or more of the spacetime coordinates. For each such coordinate qa, we have
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∂L

∂qa
= 0 (29)

and substituting this into 27, we have

d

dλ

(
∂L

∂q̇a

)
= 0 (30)

so

∂L

∂q̇a
= Ka (31)

where Ka is a constant of motion. If four constants of motion can be found, then
the system of 4 coupled, second-order, differential equations 26 can be reduced
to a system of 4 separate, first-order, differential equations. In other words, the
equations can be put into the form

q̇µ = fµ(qb) (32)

where µ runs over the 4 spacetime indices and b runs only over only those indices
corresponding to spacetime coordinates on which the metric tensor functions
depend. Then, the four functions qµ(λ) can be found by integration of the
right-hand side of 32, if possible, or via quadrature.
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2 Solving Einstein’s Equation
The content of Einstein’s field equation is often summarized as follows: the
geometry of spacetime (as embodied in the metric tensor gµν) is related, via
the field equation, to the matter/energy distribution in spacetime. The first
exact solution, found by Karl Schwarzschild in 1916, illustrates why this can
be misleading. This solution describes a spacetime outside a static, spherically-
symmetric mass, assuming no other sources (matter, energy, etc) exist. The
latter stipulaton - that there is no matter/engery in the region of interest -
implies that Tµν = 0 in this region, which in turn implies it is the vacuum field
equation 21 that was solved, under the prescribed conditions. How then do
we account for the presence of the central mass in Einstein’s equation? The
answer is: via constraints on the form of the metric tensor, consistent with the
prescribed conditions. Specifically:

• A spherically-symmetric mass implies that the spacetime is invariant under
3-dimensional rotations about the center of mass, so choose a coordinate
system best suited to this situation, i.e. {q0 = t, q1 = r, q2 = θ, q3 = φ},
where {r, φ, θ} are spherical polar coordinates, with origin at the center of
mass.

• With the above choice of coordinates, rotational invariance implies the
metric tensor elements grθ, grφ and gθφ must be zero, and that non-zero
elements of gµν cannot depend on the angular coordinates θ and φ.

• The static condition implies that the spacetime is invariant under time
translation and time reversal, which implies that the metric tensor ele-
ments gtr, gtθ and gtφ are zero, and that non-zero elements cannot depend
on the time coordinate t.

In summary, the conditions in the problem statement, together with an appro-
priate choice of coordinates, results in a metric tensor that is diagonal, where
the four non-zero elements gtt, grr, gθθ and gφφ are functions of r only. This, in
turn, constrains the form of the connection coefficients, Ricci tensor and Ricci
scalar. In particular, many elements are zero, while the non-zero elements are
simplified. Not only does this ensure that the effects of the central mass are
incorporated into Einstein’s equation, it also ensures that the latter becomes
analytically tractable. That is, instead of a system of 10, coupled, non-linear,
differential equations in four coordinates, we have a system of 4, coupled, non-
linear, differential equations in one coordinate: r. In addition, this situation
leads to three additional constants of motion (as described in the preceding
section), which together with the constant of motion 25, allow the equations of
motion to be put into the form 32.

Other important solutions to Einstein’s field equation have been obtained
through a similar method of attack. That is, the symmetries of the particular
situation result in contraints on the metric - typically many or all of the off-
diagonal elements turn out to be zero and the remaining elements are functions
of a reduced number of spacetime coordinates. For example:
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• In the Kerr solution (1963) for the vacuum region (where Tµν = 0) of
a static, axially-symmetric spacetime, the corresponding constraints on
the metric tensor lead to a system of five differential equations in two
coordinates: radial coordinate r and angular coordiate φ about the axis
of symmetry.

• In the cosmological solution of Robertson and Walker (1930s) - a situation
in which Tµν 6= 0, the symmetries of large-scale homogeneity and isotropy
lead to one differential equation in the one coordinate: the time t.
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3 Tests of the General Relativity
Verified predictions:

• Precession of Perihilia

• Deflection of Light (Gravitational Lensing)

• Gravitational Time Dilation

• deSitter Precession - precession, due to a central mass, of a vector carried
along with an orbiting body.

• Lense-Thirring Precession - precession, due to rotation of a central mass,
of a vector carried along with an orbiting body.

• Black Holes

• Gravitational Radiation (Gravity Waves)
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