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1 Alcubierre’s Ansatz
In 1994, Mexican physicist Miguel Alcubierre considered a time-like foliation of spacetime in which:

• The space-like hypersurfaces are i ntrinsically flat.

• The chosen coordinate system on the space-like hypersurfaces is Cartesian, with coordinates (x, y, z),
which implies that the spatial metric tensor is given by hij = δij , where δij is the Kronecker delta,
or in matrix notation the 3× 3 identity matrix.

• The lapse function is given by N = 1, which implies the following equivalent conditions for the family of time-like
curves normal to the hypersurfaces:

– The proper time is the coordinate time;

– The time-like curves are geodesics;

– The Eulerian observers experience geodesic motion;

– The Eulerian observers are in free fall, i.e. they experience no forces.

• The shift vector is given by

Nx = −v∆

C
(1)

Ny = 0 (2)
Nz = 0 (3)

where

C = 2tanh(R/D) (4)
∆ = tanh(r+)− tanh(r−) (5)

where
r± =

(r ±R)

D
(6)

where
r =

√
(x− xs(t))2 + y2 + z2 (7)

where xs(t) is an arbitrary function of time and

v =
dxs
dt

. (8)

Concerning the above equations, note the following items:

1. D and R are parameters with dimensions of length, constrained by D,R > 0 and D . R/4, but otherwise arbitrary.

2. From item 1, R/D, r+and r− are dimensionless, as appropriate for arguments to tanh.
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3. From (4), we see that, after fixing the parameters D and R, C is a dimensionless constant.

4. From (5), we see that ∆ is dimensionless, so ∆/C is dimensionless.

5. From (8), we see that v is a velocity.

Therefore, Nx has dimensions of velocity.
Now, since xs(t) is arbitrary, let xs(t) = act, where a is an arbitrary positive factor and c is the speed of light. Then,

v = ac. If we work in natural units, then v = a and xs(t) = at. In either case, we can take a ≥ 0 as a third parameter.

1.1 Interpretation of the Parameters
Cross-section of ∆/C at y = z = t = 0, for R = 100 and 3 values of D:

Note that:

• ∆/C has roughly the shape of a top hat.

• R determines the radius of the hat at the mid-point of its height, i.e. at ∆ = 0.5.

• D determines the steepness of the hat’s sides; specifically, the sides get closer to vertical as D gets closer to zero.

• The transition from vertical to horizontal is smooth, and is completed at roughly R± 3D.
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Cross-section of ∆/C at y = z = 0 and t = 10, for R = 100 and 3 values of D:

Note that:

• The hat-like structure moves in the positive x-direction, as time passes.

• The shape of the structure never changes.

Cross-section of Nx = −a∆/C at y = z = t = 0, for R = 100, D = 10 and 3 values of a:

Note that:

• Multiplying ∆/C by −a inverts the hat-like structure and scales it, such that the inverted hat always has depth a.

• The inverted hat also moves in the positive x-direction, as time passes, without changing its shape.
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• Since Nx determines the spacetime geometry and does not change its shape with the passage of time,
all geometric characteristics can be determined at t = 0 without loss of generality.

Embedding diagram of Nx at z = 0, for R = 100, D = 10:

Note that:

• The horizontal plan is the x, y-plane.

• The spatial dimension associated with z is supressed.

• The vertical axis corresponds to values of Nx.

2 Characteristics of Alcubierre Spacetime
We will calculate three characteristics of Alcubierre spacetime:

• The extrinsic curvature of the space-like hypersurfaces

• The expansion factor

• The Eulerian energy density

2.1 Extrinsic Curvature
In all generality, the extrinsic curvature Kij tensor on the space-like hypersurfaces is given (in the 3+1 formalism) by

Kij =
1

2N

(
∇(3)

i Nj +∇(3)
j Ni −

∂hij
∂t

)
, i, j = 1, 2, 3 (9)

where ∇(3)
i is the covariant derivative on the 3-dimensional, space-like hypersurfaces.
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Since covariant derivatives of tensor fields have not yet been describe (in previous talks), they are introduced here:

The covariant derivative is the ordinary derivative, plus one correction term for each contravariant index and minus one
correction term for each covariant index, where the correction terms involve the connection coefficients. In particular, this
prescription yields the following equations for contravariant and covariant vectors:

∇jξ
i = ∂jξ

i + Γi
ajξ

a (10)

∇jξk = ∂jξk − Γa
jkξa (11)

Recall that:

• The connection coefficients are defined in terms of the partial derivatives of the metric tensor along the coordinate
directions.

• The 3-dimensional, space-like hypersurfaces are flat and choice of coordinate system is Cartesian, i.e. hij = δij .

Thus, the correction terms are zero, so according to (10) and (11), the covariant derivates are just the ordinary derivatives.

For

Alcubierre:

• The covariant derivatives in (9) may be replaced by ordinary diervatives (as discussed in the box).

• In addition, hij = δij implies ∂hij/∂t = 0.

• N = 1

Thus, (9) simplifies to

Kij =
1

2
(∂iNj + ∂jNi) (12)

and recalling that, for Alcubierre, Ny = 0 and Nz = 0, (12) yields the following components:

Kxx =
1

2
(∂xNx + ∂xNx) = ∂xNx

Kxy =
1

2
(∂xNy + ∂yNx) =

1

2
∂yNx

Kxz =
1

2
(∂xNz + ∂zNx) =

1

2
∂zNx

Kyx =
1

2
(∂yNx + ∂xNy) =

1

2
∂yNx

Kyy =
1

2
(∂yNy + ∂yNy) = 0

Kyz =
1

2
(∂yNz + ∂zNy) = 0

Kzx =
1

2
(∂zNx + ∂xNz) =

1

2
∂zNx

Kzy =
1

2
(∂zNy + ∂yNz) = 0

Kzz =
1

2
(∂zNz + ∂zNz) = 0

or using matrix representation, the extrinsic curvature is

[K∗∗] =

 ∂xNx
1
2∂yNx

1
2∂zNx

1
2∂yNx 0 0
1
2∂zNx 0 0

 (13)
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2.2 Expansion Factor
In all generality, the expansion factor θ is defined by

θ := −NK (14)

where K is the trace of the extrinsic curvature tensor. Recall that when taking the eigenvalues of a rank-2 tensor, we must,
in general, use the mixed form of the tensor. Since the trace is the sum of the eigenvalues, taking the trace of a rank-2 tensor
also requires the mixed form. For the extrinsic curvature, this is given by

Ki
j = hiaKaj (15)

or in matrix form

[K∗
∗] = [h∗∗] [K∗∗] (16)

and so the trace is given by

K = tr [K∗
∗] =

3∑
i=1

Ki
i. (17)

However, since (for Alcubierre) hij = δij , we have hij = δij , so using (16) we have

[K∗
∗] = I3×3 [K∗∗] = [K∗∗] (18)

and using (13) and (18), (17) reduces to

K = tr [K∗∗] = ∂xNx. (19)

Finally, substituting (19) into (14) and recalling once again that N = 1, we have

θ = −∂xNx. (20)

Expansion factor cross-section at z = 0, with D = 10, R = 100 and a = 1

Note that:

• x-axis and y-axis are horizontal and vertical, respectively.

• z-axis is perpendicular to the image.

• The expansion θ is essentially zero in the black region.

• The expansion θ is positive in the green region and negative in the red region.

• The more intense the green the greater the expansion.

• The more intense the red, the greater the contraction.
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• θmax is at x = −R and y = 0; θmin is at x = R and y = 0;

• The region where θ 6= 0 forms a thin, spherical shell,
such that the θ > 0 in the hemisphere where x < 0 and θ < 0 in the hemisphere where x > 0.

• This spherical shell moves at the speed of light (because a = 1) in the positive x-direction.

• A vehicle (with observers) in the interior of the shell is carried along as the shell moves.

• These observers experience no forces and no time dilation.

Embedding diagram of expansion factor θ at z = 0, for R = 100, D = 10 and a = 1:

Note that:

• The horizontal plane is the xy-plane.

• The spatial dimension corresponding to z is supressed.

• The vertical axis corresponds to θ, so we can see the actual numerical values.
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Expansion factor at z = 0, with D = 20, R = 100 and a = 1

Note that:

• The shell thickness is proportional to D.

• The maximum and minimum expansion are inversely proportional to D.
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Expansion factor at z = 0, with D = 10, R = 100 and a = 0.5

Note that, the maximum and minimum expansion are proportional to a.

2.3 Eulerian Energy Density
In all generality, the Eulerian energy density ρ is given by

ρ =
1

16π

(
R(3) +K2 −KijK

ij
)

(21)

where R(3) is the Ricci scalar on the space-like hypersurfaces. For Alcubierre, (as we have seen) these are instrinsically flat,
which implies that R(3) = 0 and [K∗∗] = [K∗∗], so (21) reduces to

ρ =
1

16π

K2 −
3∑

i=1

3∑
j=1

K2
ij

 (22)
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Eulerian energy density cross-section at z = 0, with D = 10, R = 100 and a = 1

Note that

• x-, y- and z-axes are defined as expansion factor cross-section.

• Color coding has the same meaning as expansion factor cross-section.

• All energy densities are negative.

• The region where ρ 6= 0 is forms a thin, spherical shell, but the regions of greatest intensity (of negative energy density)
are perpendicular to the direction of motion, i.e. |ρ|max is at x = 0 and y = ±R.

• This spherical shell is what would have to be engineered in order to make this warp drive a reality.

Embedding diagram of Eulerian energy density ρ at z = 0, for R = 100, D = 10 and a = 1:

Note that:

• The horizontal plane is the xy-plane.
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• The spatial dimension corresponding to z is supressed.

• The vertical axis corresponds to ρ, so we can see the actual numerical values.

Embedding diagram of Eulerian energy density ρ at z = 0, with D = 20, R = 100 and a = 1

Note that:

• The shell thickness is proportional to D.

• The amount of exotic matter required descreases with increasing D.
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Embedding diagram of Eulerian energy density ρ at z = 0, with D = 10, R = 100 and a = 0.5

Note that the amoutn of exotic matter required decreases with a.

3 Energy Conditions
Since the Eulerian energy density is negative within the spherical shell, we already know that the WEC is violated. Suppose,
now, that we go ahead and analyze the eigenvalues of the (mixed) energy tensor. The result is that within the spherical shell
the there are complex eigenvalues.

Magnitude of real imaginary parts of complex conjugat pair

Images show that non-zero eigenvalues are confined to the spherical shell.
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Graph of real and imaginary magnitudes along path shown above (white line)

Where eigenvalues are non-zero, imaginary parts dominate. Thus, there is no doubt that the Hawking-Ellis type is IV,
which means all energy conditions are violated.
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